
Improving TCP Congestion Control over Internets with Heterogeneous
Transmission Media

�

Christina Parsa and J.J. Garcia-Luna-Aceves
Computer Engineering Department

Baskin School of Engineering
University of California

Santa Cruz, California 95064
chris, jj@cse.ucsc.edu

�������	��
���

We present a new implementation of TCP that is better suited to
today’s Internet than TCP Reno or Tahoe. Our implementation of
TCP, which we call TCP Santa Cruz, is designed to work with path
asymmetries, out-of-order packet delivery, and networks with lossy
links, limited bandwidth and dynamic changes in delay. The new
congestion-control and error-recovery mechanisms in TCP Santa
Cruz are based on: using estimates of delay along the forward
path, rather than the round-trip delay; reaching a target operat-
ing point for the number of packets in the bottleneck of the connec-
tion, without congesting the network; and making resilient use of
any acknowledgments received over a window, rather than increas-
ing the congestion window by counting the number of returned ac-
knowledgments. We compare TCP Santa Cruz with the Reno and
Vegas implementations using the ns2 simulator. The simulation ex-
periments show that TCP Santa Cruz achieves significantly higher
throughput, smaller delays, and smaller delay variances than Reno
and Vegas. TCP Santa Cruz is also shown to prevent the swings in
the size of the congestion window that typify TCP Reno and Tahoe
traffic, and to determine the direction of congestion in the network
and isolate the forward throughput from events on the reverse path.

� ��� �	��������������� �

Reliable end-to-end transmission of data is a much needed service
for many of today’s applications running over the Internet (e.g.,
WWW, file transfers, electronic mail, remote login), which makes
TCP an essential component of today’s Internet. However, it has
been widely demonstrated that TCP exhibits poor performance over
wireless networks [1, 17] and networks that have even small de-
grees of path asymmetries [11]. The performance problems of cur-
rent TCP implementations (Reno and Tahoe) over internets of het-
erogeneous transmission media stem from inherent limitations in
the error recovery and congestion-control mechanisms they use.

Traditional Reno and Tahoe TCP implementations perform one
round-trip time estimate for each window of outstanding data. In
addition, Karn’s algorithm [9] dictates that, after a packet loss,
round-trip time (RTT) estimates for a retransmitted packet cannot
be used in the TCP RTT estimation. The unfortunate side-effect of
this approach is that no estimates are made during periods of con-
gestion – precisely the time when they would be the most useful.
�

This work was supported in part at UCSC by the Office of Naval Research (ONR)
under Grant N00014-99-1-0167.

Without accurate RTT estimates during congestion, a TCP sender
may retransmit prematurely or after undue delays. Because all prior
approaches are unable to perform RTT estimates during periods of
congestion, a timer-backoff strategy (in which the timeout value is
essentially doubled after every timeout and retransmission) is used
to avoid premature retransmissions.

Reno and Tahoe TCP implementations and many proposed al-
ternative solutions [14, 15, 20] use packet loss as a primary indi-
cation of congestion; a TCP sender increases its window size, until
packet losses occur along the path to the TCP receiver. This poses
a major problem in wireless networks, where bandwidth is a very
scarce resource. Furthermore, the periodic and wide fluctuation
of window size typical of Reno and Tahoe TCP implementations
causes high fluctuations in delay and therefore high delay variance
at the endpoints of the connection – a side effect that is unaccept-
able for delay-sensitive applications.

Today’s applications over the Internet are likely to operate over
paths that either exhibit a high degree of asymmetry or which ap-
pear asymmetric due to significant load differences between the for-
ward and reverse data paths. Under such conditions, controlling
congestion based on acknowledgment (ACK) counting as in TCP
Reno and Tahoe results in significant underutilization of the higher
capacity forward link due to loss of ACKs on the slower reverse
link [11]. ACK losses also lead to very bursty data traffic on the
forward path. For this reason, a better congestion control algorithm
is needed that is resilient to ACK losses.

In this paper, we propose TCP Santa Cruz, which is a new im-
plementation of TCP implementable as a TCP option by utilizing
the extra 40 bytes available in the options field of the TCP header.
TCP Santa Cruz detects not only the initial stages of congestion,
but can also identify the direction of congestion, i.e., it determines
if congestion is developing in the forward path and then isolates the
forward throughput from events such as congestion on the reverse
path. The direction of congestion is determined by estimating the
relative delay that one packet experiences with respect to another;
this relative delay is the foundation of our congestion control algo-
rithm. Our approach is significantly different from rate-controlled
congestion control approaches, e.g., TCP Vegas [2], as well as those
that use an increasing round-trip time (RTT) estimate as the pri-
mary indication of congestion [22, 18, 21], in that TCP Santa Cruz
does not use RTT estimates in any way for congestion control. This
represents a fundamental improvement over the latter approaches,
because RTT measurements do not permit the sender to differen-
tiate between delay variations due to increases or decreases in the
forward or reverse paths of a connection.

TCP Santa Cruz provides a better error-recovery strategy than

Reno and Tahoe do by providing a mechanism to perform RTT esti-
mates for every packet transmitted, including retransmissions. This
eliminates the need for Karn’s algorithm and does not require any
timer-backoff strategies, which can lead to long idle periods on the
links. In addition, when multiple segments are lost per window we
provide a mechanism to perform retransmissions without waiting
for a TCP timeout.

Section 2 discusses prior related work to improving TCP and
compares those approaches to ours. Section 3 describes the al-
gorithms that form our proposed TCP implementation and shows
examples of their operation. Section 4 shows via simulation the
performance improvements obtained with TCP Santa Cruz over the
Reno and Vegas TCP implementations. Finally, Section 5 summa-
rizes our results.

� � ����� ��� � ��� � �	�

Congestion control for TCP is an area of active research; solutions
to congestion control for TCP address the problem either at the in-
termediate routers in the network [8, 13, 6] or at the endpoints of
the connection [2, 7, 20, 21, 22].

Router-based support for TCP congestion control can be pro-
vided through RED gateways [6], a solution in which packets are
dropped in a fair manner (based upon probabilities) once the router
buffer reaches a predetermined size. As an alternative to dropping
packets, an Explicit Congestion Notification (ECN) [8] bit can be
set in the packet header, prompting the source to slow down. Cur-
rent TCP implementations do not support the ECN method. Kalam-
poukas et al. [13] propose an approach that prevents TCP sources
from growing their congestion window beyond the bandwidth de-
lay product of the network by allowing the routers to modify the
receiver’s advertised window field of the TCP header in such a way
that TCP does not overrun the intermediate buffers in the network.

End-to-end congestion control approaches can be separated into
three categories: rate-control, packet round-trip time (RTT) mea-
surements, and modification of the source or receiver to return ad-
ditional information beyond what is specified in the standard TCP
header [20]. A problem with rate-control and relying upon RTT es-
timates is that variations of congestion along the reverse path cannot
be identified and separated from events on the forward path. There-
fore, an increase in RTT due to reverse-path congestion or even
link asymmetry will affect the performance and accuracy of these
algorithms. In the case of RTT monitoring, the window size could
be decreased (due to an increased RTT measurement) resulting in
decreased throughput; in the case of rate-based algorithms, the win-
dow could be increased in order to bump up throughput, resulting
in increased congestion along the forward path.

Wang and Crowcroft’s DUAL algorithm [21] uses a congestion
control scheme that interprets RTT variations as indications of de-
lay through the network. The algorithm keeps track of the minimum
and maximum delay observed to estimate the maximum queue size
in the bottleneck routers and keep the window size such that the
queues do not fill and thereby cause packet loss. An adjustment
of
���������� is made to the congestion window every other round-
trip time whenever the observed RTT deviates from the mean of the
highest and lowest RTT ever observed. RFC 1323 [7] uses the TCP
Options to include a timestamp in every data packet from sender
to receiver to obtain a more accurate RTT estimate. The receiver
echoes this timestamp in each ACK packet and the round-trip time

is calculated with a single subtraction. This approach encounters
problems when delayed ACKs are used, because it is then unclear
to which packet the timestamp belongs. RFC 1323 suggests that
the receiver return the earliest timestamp so that the RTT estimate
takes into account the delayed ACKs, as segment loss is assumed
to be a sign of congestion, and the timestamp returned is from the
sequence number which last advanced the window. When a hole
is filled in the sequence space, the receiver returns the timestamp
from the segment which filled hole. The downside of this approach
is that it cannot provide accurate timestamps when segments are
lost.

Two notable rate-control approaches are the Tri-S [22] scheme
and TCP Vegas [2]. Wang and Crowcroft’s Tri-S algorithm [22]
computes the achieved throughput by measuring the RTT for a
given window size (which represents the amount of outstanding
data in the network) and comparing the throughput when the win-
dow is increased by one segment. TCP Vegas has three main com-
ponents: a retransmission mechanism, a congestion avoidance mech-
anism, and a modified slow-start algorithm. TCP Vegas provides
faster retransmissions by examining a timestamp upon receipt of
a duplicate ACK. The congestion avoidance mechanism is based
upon a once per round-trip time comparison between the ideal (ex-
pected) throughput and the actual throughput. The ideal throughput
is based upon the best RTT ever observed and the observed through-
put is the throughput observed over a RTT period. The goal is to
keep the actual throughput between two threshhold values, � and � ,
which represent too little and too much data in flight, respectively.

Because we are interested in solutions to TCP’s performance
problems applicable over different types of networks and links, our
approach focuses on end-to-end solutions. However, our work is
closely related to a method of bandwidth probing introduced by
Keshav [10]. In this approach, two back-to-back packets are trans-
mitted through the network and the interarrival time of their ACK
packets is measured to determine the bottleneck service rate (the
conjecture is that the ACK spacing preserves the data packet spac-
ing). This rate is then used to keep the bottleneck queue at a pre-
determined value. For the scheme to work, it is assumed that the
routers are employing round-robin or some other fair service disci-
pline. The approach does not work over heterogeneous networks,
where the capacity of the reverse path could be orders of magni-
tude slower than the forward path because the data packet spacing
is not preserved by the ACK packets. In addition, a receiver could
employ a delayed ACK strategy, which is common in many TCP
implementations, and congestion on the reverse path can interfere
with ACK spacing and invalidate the measurements made by the
algorithm.

� �������
 � �	
 � ����� � � �������� �"!$#%� ��� � �'& ��� � �

TCP Santa Cruz provides improvement over TCP Reno in two ma-
jor areas : congestion control and error recovery. The congestion
control algorithm introduced in TCP Santa Cruz determines when
congestion exists or is developing on the forward data path – a con-
dition which cannot be detected by a round-trip time estimate. This
type of monitoring permits the detection of the incipient stages of
congestion, allowing the congestion window to increase or decrease
in response to early warning signs. In addition, TCP Santa Cruz
uses relative delay calculations to isolate the forward throughput
from any congestion that might be present along the reverse path.

The error recovery methods introduced in TCP Santa Cruz perform
timely and efficient early retransmissions of lost packets, eliminate
unnecessary retransmissions for correctly received packets when
multiple losses occur within a window of data, and provide RTT es-
timates during periods of congestion and retransmission (i.e., elim-
inate the need for Karn’s algorithm). The rest of this section de-
scribes these mechanisms.

� � � � � � � � ������� � � � � ����� !
� � � � � � ! ��� � �
 ��� � ��� � �
�� � � � ��� �	� � ��� � � ��� !�

 ��� �"� ��� !�
�� �

Round-trip time measurements alone are not sufficient for deter-
mining whether congestion exists along the data path. Figure 1
shows an example of the ambiguity involved when only RTT mea-
surements are considered. Congestion is indicated by a queue along
the transmission path. The example shows the transmission of two
data packets and the returning ACKs from the receiver. If only
round-trip time (RTT) measurements were used, then measurements����

���
�

and
������

�
�
, could lead to an incorrect conclusion

of developing congestion in the forward path for the second packet.
The true cause of increased RTT for the second packet is congestion
along the reverse path, not the data path. Our protocol solves this
ambiguity by introducing the notion of the relative forward delay.

= -0.5 < 0D
F

2,1

RTT 1 = 4

RTT 2 = 5
t=3.5

t=4
t=5

t=7

t=1

t=2

Figure 1. Example of RTT ambiguity

Relative delay is the increase and decrease in delay that pack-
ets experience with respect to each other as they propagate through
the network. These measurements are the basis of our congestion
control algorithm. The sender calculates the relative delay from
a timestamp contained in every ACK packet that specifies the ar-
rival time of the packet at the destination. From the relative delay
measurement the sender can determine whether congestion is in-
creasing or decreasing in either the forward or reverse path of the
connection; furthermore, the sender can make this determination
for every ACK packet it receives. This is impossible to accomplish
using RTT measurements.

Figure 2 shows the transfer of two sequential packets transmit-
ted from a source to a receiver and labeled #1 and #2. The sender
maintains a table with the following two times for every packet:
(a) the transmission time of the data packet at the source, and (b)
the arrival time of the data packet at the receiver, as reported by
the receiver in its ACK. From this information, the sender calcu-
lates the following time intervals for any two data packets � and �
(where �����): ��� � ! , the time interval between the transmission of
the packets; and

 � � ! , the inter-arrival time of the data packets at
the receiver. From these values, the relative forward delay, "$#� � ! ,
can be obtained:

" #� � ! �
 � � !�% � � � ! (1)

where "&#� � ! represents the change in forward delay experienced by
packet � with respect to packet � .

i

j

j,i

pkt #1

pkt #2

ACK #1

ACK #2A

S

ACK #1

R j,i

ACK #2

Figure 2. Transmission of 2 packets and corresponding
relative delay measurements

Figure 3 illustrates how we detect congestion in the forward
path. As illustrated in Figure 3(a), when " #� � ! �

'
the two packets

experience the same amount of delay in the forward path. Fig-
ure 3(b) shows that the first packet was delayed more than the sec-
ond packet whenever " #� � !�('

. Figure 3(c) shows that the second
packet has been delayed with respect to the first one when " #� � ! � '

.
Finally, Figure 3(d) illustrates out-of-order arrival at the receiver. In
the latter case, the sender is able to determine the presence of mul-
tiple paths to the destination by the timestamps returned from the
receiver. Although the example illustrates measurements based on
two consecutive packets, TCP Santa Cruz does not require that the
calculations be performed on two sequential packets; however, the
granularity of the measurements depends on the ACK policy used.

t=4.0

t=3

t=1

t=3

(a) (b)

(d)(c)

t=1

t=3

t=2

t=4

j,i

F

t=1

t=3.5

t=2.5

D

j,i

FD = -0.5 < 0
= 0 t=4.5

t=2

t=4.5

t=1

= 0.5 > 0D
j,i

F
t=4.5

nonFIFO arrival

D = 0F

j,i

Figure 3. FORWARD PATH: (a)Equal delay (b)1st
packet delayed (c)2nd packet delayed (d)non-FIFO ar-
rival of packets

� � � � � � � � � � ������� � � � � �	���"! � ! � � � � ��)��

At any time during a connection, the network queues (and specif-
ically the bottleneck queue) are in one of three states: increasing

Queue

Buildup

Queue

Steady

Queue

Draining

0>0

0

>0

>0

<0

<0

0

Figure 4. Based upon the value of " #� � ! , the bottleneck
queue can be currently filling, draining or maintaining.

in size, decreasing in size, or maintaining their current state. The
state diagram of Figure 4 shows how the computation of the rela-
tive forward delay, "&#� � ! , allows the determination of the change in
queue state. The goal in TCP Santa Cruz is to allow the network
queues (specifically the bottleneck queue) to grow to a desired size;
the specific algorithm to achieve this goal is described next.

The positive and negative relative delay values represent addi-
tional or less queueing in the network, respectively. Summing the
relative delay measurements over a period of time provides an in-
dication of the level of queueing at the bottleneck. If the sum of
relative delays over an interval equals 0, it indicates that, with re-
spect to the beginning of the interval, no additional congestion or
queueing was present in the network at the end of the interval. Like-
wise, if we sum relative delays from the beginning of a session, and
at any point the summation equals zero, we would know that all
of the data for the session are contained in the links and not in the
network queues (assuming the queues were initially empty).

The congestion control algorithm of TCP Santa Cruz operates
by summing the relative delays from the beginning of a session,
and then updating the measurements at discrete intervals, with each
interval equal to the amount of time to transmit a windowful of
data and receive the corresponding ACKs. Since the units of " #� � !
is time (seconds), the relative delay sum must then be translated
into an equivalent number of packets (queued at the bottleneck)
represented by this delay. In other words, the algorithm attempts to
maintain the following condition:

� ��� �
�����

� � ���
	���������
	�� (2)

where � ��� is the total number of packets queued at the bottleneck at
time � ! ; � ���

is the operating point (the desired number of packets,
per session, to be queued at the bottleneck); ������	�� is the addi-
tional amount of queueing introduced over the previous window� !
� � ; and � � � � ����� .

�)�� �"& � ��
 ��� � � & � � � ��� The operating point,
� ���

, is
the desired number of packets to reside in the bottleneck queue.
The value of

�����
should be greater than zero; the intuition behind

this decision is that an operating point equal to zero would lead
to underutilization of the available bandwidth because the queues

are always empty, i.e., no queueing is tolerated. Instead, the goal
is to allow a small amount of queueing so that a packet is always
available for forwarding over the bottleneck link. For example, if
we choose

� ���
to be 1, then we expect a session to maintain 1

packet in the bottleneck queue, i.e., our ideal or desired congestion
window would be one packet above the bandwidth delay product
(BWDP) of the network.

� ��
 � � !�
 ��� � � �)�� �	� !�
 ��� �"� ��� !�
����
The relative

delay gives an indication of the change in network queueing, but
provides no information on the actual number of packets corre-
sponding to this value. We translate the sum of relative delays into
the equivalent number of queued packets by first calculating the av-
erage packet service time, ��� � � (!#" �#$ ��� �), achieved by a session
over an interval. This rate is of course limited by the bottleneck
link.

Our model of the bottleneck link, depicted in Figure 5, consists
of two delay parameters: the queueing delay, %'& ; and the output
service time, ��� � � (the amount of time spent servicing a packet).
The queueing delay is variable and is controlled by the congestion
control algorithm (by changing the sender’s congestion window)
and by network cross-traffic. The relative delay measurements pro-
vide some feedback about this value. The output rate of a FIFO
queue will vary according to the number of sessions and the bursti-
ness of the arrivals from competing sessions. The packet service
rate is calculated as

�(�)� � �

*,+�- .0/210354537698:3#; (3)

where

is the difference in arrival time of any two packets as
calculated from the timestamps returned by the receiver. Because
��� � � changes during an interval, we calculate the average packet
service time, ��� � � , over the interval. Finally, we translate the sum
of relative delays over the interval into the equivalent number of
packets represented by the sum by dividing the relative delay sum-
mation by the average time to service a packet. This gives us the
number of packets represented by the delay over an interval:

� ����	�� �
< " #=
�(�)� � (4)

where � are packet-pairs within window
� !
� � . The total queueing

in the system at the end of the interval is determined by Eq. 2.

τQ

Bottleneck Link

pktS

Figure 5. Bottleneck Link: Delay consists of two parts:
% & , the delay due to queueing and ��� � � , the packet ser-
vice time over the link.

���?>�� ����� � � �)��A@ � � ���?@B�
The TCP Santa Cruz con-

gestion window is adjusted such that Eq. 2 is satisfied within a range
of

�����
�C , where C is some fraction of a packet. Adjustments are
made to the congestion window only at discrete intervals, i.e., in the
time taken to empty a windowful of data from the network. Over
this interval, ������	�� is calculated and at the end of the interval it is

added to � ���
	�� . If the result falls within the range of
�����
�C , the

congestion window is maintained at its current size. If, however,
� ��� falls below

����� % C , the system is not being pushed enough
and the window is increased linearly during the next interval. If
� ��� rises above

����� C , then the system is being pushed too high
above the desired operating point, and the congestion window is
decreased linearly during the next interval.

In TCP Reno, the congestion control algorithm is driven by
the arrival of ACKs at the source (the window is incremented by� $ � ��� � for each ACK while in the congestion avoidance phase).
This method of ACK counting causes Reno to perform poorly when
ACKs are lost [11]; unfortunately, ACK loss becomes a predomi-
nant feature in TCP over asymmetric networks [11]. Given that the
congestion control algorithm in TCP Santa Cruz makes adjustments
to the congestion window based upon delays through the network
and not on the arrival of ACKs in general, the algorithm is robust
to ACK losses.

� �	
 �	����&
Currently, the algorithm used by TCP Santa Cruz at

startup is the slow start algorithm used by TCP Reno with two
modifications. First, the initial congestion window, ����� � , is set to
two segments instead of one so that initial values for " #! � � can be
calculated. Second, the algorithm may stop slow start before
! !7�����:"'!���� � ��� � if any relative delay measurement or � ��� ex-
ceeds

� ��� $�� . Once stopped, slow start begins again only if
a timeout occurs. During slow start, the congestion window
doubles every round-trip time, leading to an exponential growth in
the congestion window. One problem with slow start is that
such rapid growth often leads to congestion in the data path [2].
TCP-SC reduces this problem by ending slow start once any
queue buildup is detected.

� � � � ����� � � � � � � � ���
� � � � � � � &���� � � � � � � � ����� �
 � �

TCP Santa Cruz provides better RTT estimates over traditional TCP
approaches by measuring the round-trip time (RTT) of every seg-
ment transmitted for which an ACK is received, including retrans-
missions. This eliminates the need for Karn’s algorithm [9] (in
which RTT measurements are not made for retransmissions) and
timer-backoff strategies (in which the timeout value is essentially
doubled after every timeout and retransmission). To accomplish
this, TCP Santa Cruz requires each returning ACK packet to indi-
cate the precise packet that caused the ACK to be generated and
the sender must keep a timestamp for each transmitted or retrans-
mitted packet. Packets can be uniquely identified by specifying
both a sequence number and a retransmission copy number. For
example, the first transmission of packet 1 is specified as 1.1, the
second transmission is labeled 1.2, and so forth. In this way, the
sender can perform a new RTT estimate for every ACK it receives.
Therefore, ACKs from the receiver are logically a triplet consist-
ing of a cumulative ACK (indicating the sequence number of the
highest in-order packet received so far), and the two-element se-
quence number of the packet generating the ACK (usually the most
recently received packet). For example, ACK (5.7.2) specifies a cu-
mulative ACK of 5, and that the ACK was generated by the second
transmission of a packet with sequence number 7. As with tradi-
tional TCP implementations, we do not want the RTT estimate to
be updated too quickly; therefore, a weighted average is computed

for each new value received. We use the same algorithm as TCP
Tahoe and Reno; however, the computation is performed for every
ACK received, instead of once per RTT.

� � � � � � �	� � � � ���?@

To assist in the identification and recovery of lost packets, the re-
ceiver in TCP Santa Cruz returns an ACK Window to the sender to
indicate any holes in the received sequential stream. In the case of
multiple losses per window, the ACK Window allows TCP-SC to
retransmit all lost packets without waiting for a TCP timeout.

The ACK Window is similar to the bit vectors used in previous
protocols, such as NETBLT [4] and TCP-SACK [5][15]. Unlike
TCP-SACK, our approach provides a new mechanism whereby the
receiver is able to report the status of every packet within the cur-
rent transmission window. � The ACK Window is maintained as a
vector in which each bit represents the receipt of a specified num-
ber of bytes beyond the cumulative ACK. The receiver determines
an optimal granularity for bits in the vector and indicates this value
to the sender via a one-byte field in the header. A maximum of 19
bytes are available for the ACK window to meet the 40-byte limit
of the TCP option field in the TCP header. The granularity of the
bits in the window is bounded by the receiver’s advertised window
and the 18 bytes available for the ACK window; this can accommo-
date a 64K window with each bit representing 450 bytes. Ideally, a
bit in the vector would represent the MSS of the connection, or the
typical packet size. Note this approach is meant for data intensive
traffic, therefore bits represent at least 50 bytes of data. If there are
no holes in the expected sequential stream at the receiver, then the
ACK window is not generated.

Figure 6 shows the transmission of five packets, three of which
are lost and shown in grey (1,3, and 5). The packets are of vari-
able size and the length of each is indicated by a horizontal arrow.
Each bit in the ACK window represents 50 bytes with a 1 if the
bytes are present at the receiver and a 0 if they are missing. Once
packet #1 is recovered, the receiver would generate a cumulative
ACK of 1449 and the bit vector would indicate positive ACKs for
bytes 1600 through 1849. There is some ambiguity for packets 3
and 4 since the ACK window shows that bytes 1550 – 1599 are
missing. The sender knows that this range includes packets 3 and
4 and is able to infer that packet 3 is lost and packet 4 has been
received correctly. The sender maintains the information returned
in the ACK Window, flushing it only when the window advances.
This helps to prevent the unnecessary retransmission of correctly
received packets following a timeout when the session enters slow
start.

Packet number 1 2 3 4 5

Byte number

Presence 0 0 1 0 0 0 1 1 1 1 0 0

13
00

13
50

14
00

14
50

15
00

15
50

16
00

16
50

17
00

18
00

18
50

19
00

Figure 6. ACK window transmitted from receiver to
sender. Packets 1, 3 and 5 are lost.

�
TCP-SACK is generally limited by the TCP options field to reporting only three

unique segments of continuous data within a window.

� � � � � � � �	��
 � ��� �����	��� � � �"! ��� �

Our retransmission strategy is motivated by such evidence as the
Internet trace reports by Lin and Kung, which show that 85% of
TCP timeouts are due to “non-trigger” [12]. Non-trigger occurs
when a packet is retransmitted by the sender without previous at-
tempts, i.e., when three duplicate ACKs fail to arrive at the sender
and therefore TCP’s fast retransmission mechanism never happens.
In this case, no retransmissions can occur until there is a timeout at
the source. Therefore, a mechanism to quickly recover losses with-
out necessarily waiting for three duplicate ACKs from the receiver
is needed.

Given that TCP Santa Cruz has a much tighter estimate of the
RTT time per packet and that the TCP Santa Cruz sender receives
precise information on each packet correctly received (via the ACK
Window), TCP Santa Cruz can determine when a packet has been
dropped without waiting for TCP’sFast Retransmit algorithm.
TCP Santa Cruz can quickly retransmit and recover a lost packet
once any ACK for a subsequently transmitted packet is ‘received
and a time constraint is met. Any lost packet � , initially transmitted
at time ��! is marked as a hole in the ACK window. Packet � can
be retransmitted once the following constraint is met: as soon as an
ACK arrives for any packet transmitted at time ��� (where ��� ��� !),
and ����������	�
 � % ��! � ����

, where ����������	�
 � is the current time and����
is the estimated round-trip time of the connection. There-

fore, any packet marked as unreceived in the ACK window can be
a candidate for early retransmission.

� � � � ��� & � � � � � � & !'� � � � �	
 ����� �

TCP Santa Cruz can be implemented as a TCP option containing
the fields depicted in Table 1. The TCP Santa Cruz option can
vary in size from 11 to 40 bytes, depending on the size of the ACK
window (see Section 3.2.2).

Field Size Description
(bytes)

Kind 1 kind of protocol
Length 1 length field

Data.copy 4 (bits) retrans. number of data pkt
ACK.copy 4 (bits) retrans. number of data pkt gen. ACK

ACK.sn 4 SN of data pkt generating ACK
Timestamp 4 arr. time of data pkt generating ACK

ACK Window Granularity 1 num. bytes represented by each bit
ACK Window 0 – 18 holes in the receive stream

Table 1. TCP Santa Cruz options field description

 � � ��� � � �
 � � � � � �	��! �	�

In this section we examine the performance of TCP Santa Cruz
compared to TCP Vegas [3] and TCP Reno [19]. We first show per-
formance results for a basic configuration with a single source and a
bottleneck link, then a single source with cross-traffic on the reverse
path, and finally performance over asymmetric links. We have mea-
sured performance for TCP Santa Cruz through simulations using
the “ns” network simulator [16]. The simulator contains imple-
mentations of TCP Reno and TCP Vegas. TCP Santa Cruz was
implemented by modifying the existing TCP-Reno source code to
include the new congestion avoidance and error-recovery schemes.
Unless stated otherwise, data packets are of size 1Kbyte, the max-
imum window size, ����� � ����� for every TCP connection is 64
packets and the initial ssthresh is equal to ���� ������� ����� . All

simulations are an FTP transfer with a source that always has data
to send; simulations are run for 10 seconds. In addition, the TCP
clock granularity is

� ' ' � ! for all protocols.

 � � �
 �	��� � �����! � � � ��� � � ��� � ����
 ��� � �

Our first experiment shows protocol performance over a simple net-
work, depicted in Figure 7, consisting of a TCP source sending
1Kbyte data packets to a receiver via two intermediate routers con-
nected by a 1.5Mbps bottleneck link. The bandwidth delay product
(BWDP) of this configuration is equal to 16.3Kbytes; therefore, in
order to accommodate one windowful of data, the routers are set to
hold 17 packets.

1.5Mbps, 5msec

Source Receiver

10Mbps, 33msec
Router 2Router 1

Q = 17Q = 17

10Mbps, 2msec

Figure 7. Basic bottleneck configuration

Figures 8 (a) and (b) show the growth of TCP Reno’s conges-
tion window and the queue buildup at the bottleneck link. Once the
congestion window grows beyond 17 packets (the BWDP of the
connection) the bit pipe is full and the queue begins to fill. The
routers begin to drop packets once the queue is full; eventually
Reno notices the loss, retransmits, and cuts the congestion win-
dow in half. This produces see-saw oscillations in both the window
size and the bottleneck queue length. These oscillations greatly in-
crease not only delay, but also delay variance for the application. It
is increasingly important for real-time and interactive applications
to keep delay and delay variance to a minimum.

In contrast, Figures 9 (a) and (b) show the evolution of the
sender’s congestion window and the queue buildup at the bottleneck
for TCP Santa Cruz. These figures demonstrate the main strength
of TCP Santa Cruz: adaptation of the congestion control algorithm
to transmit at the bandwidth of the connection without congesting
the network and without overflowing the bottleneck queues. In this
example the threshold value of

� ���
, the desired additional number

of packets in the network beyond the BWDP, is set to
�����

�
��� �

.
Figure 9(b) shows the queue length at the bottleneck link for TCP
Santa Cruz reaches a steady-state value between 1 and 2 packets.
We also see that the congestion window, depicted in Figure 9(a)
reaches a peak value of 18 packets, which is the sum of the BWDP
(16.5) and

�����
. The algorithm maintains this steady-state value for

the duration of the connection.
Table 2 compares the throughput, average delay and delay vari-

ance for Reno, Vegas and Santa Cruz. For TCP Santa Cruz we vary
the amount of queueing tolerated in the network from

� ���
= 1 to 5

packets. All protocols achieve similar throughput, with Santa Cruz
� �

�
performing slightly better than Reno. The reason Reno’s

throughput does not suffer is that most of the time the congestion
window is well above the BWDP of the network so that packets
are always queued up at the bottleneck and therefore available for
transmission. What does suffer, however, is the delay experienced
by packets transmitted through the network.

The minimum forward delay through the network is equal to
40 msec propagation delay plus 6.9 msec packet forwarding time,

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 p

ac
ke

ts

Time(sec)

Reno: congestion window

cwnd

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Time(sec)

Reno: Bottleneck queue size

Reno

(a) (b)

Figure 8. TCP Reno: (a) congestion window (b) bottleneck queue

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 p

ac
ke

ts

Time(sec)

Santa Cruz: congestion window

cwnd

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Time(sec)

Santa Cruz: Bottleneck queue size

Santa Cruz

(a) (b)

Figure 9. TCP Santa Cruz: (a) congestion window (b) bottleneck queue

yielding a total minimum forward delay of approximately 47 msec.
Reno is the clear loser in this case with not only the highest average
delay, but also a high delay variation. Santa Cruz with

��� �
���� �

provides the same average delay as Vegas, but a with lower
delay deviation. As

��� �
increases, the delay in Santa Cruz also

increases because more packets are allowed to sit in the bottleneck
queue. Also, throughput is seen to grow with

� ���
because not only

does the ���������	��
��� period last longer, but the peak window size
is reached earlier in the connection, leading to a faster transmission
rate earlier in the transfer. In addition, with a larger

� ���
it is more

likely that a packet is available in the queue awaiting transmission.

Comparison of Throughput and Average Delay
Protocol Throughput Utilization Ave. delay Delay variance

(Mbps) (msec) (msec)
Reno 1.45 0.97 99.4 2.06

SC n=1.5 1.42 0.94 55.1 0.0041
SC n=3 1.45 0.97 60.6 0.0063
SC n=5 1.47 0.98 79.2 0.0073

Vegas (1,3) 1.40 0.94 55.2 0.0077

Table 2. Throughput, delay and delay variance compar-
isons for Reno, Vegas and Santa Cruz for basic bottle-
neck configuration.

 � � � ��
�� � � � � � �"� ��� ��� � � �

This section looks at how data flow on the forward path is affected
by traffic and congestion on the reverse path. Figure 10 shows that,
in addition to a TCP source from A to the Receiver, there is also a
TCP Reno source from B to Router 1 in order to cause congestion
on the reverse link.

Figure 11 (a) shows that the congestion window growth for
Reno source A is considerably slower compared to the case when
no reverse traffic is present in Figure 8(a). Because Reno grows
its window based on ACK counting, lost and delayed ACKs on the
reverse path prevent Source A from filling the bit pipe as fast as it
could normally do, resulting in low link utilization on the forward

Receiver

Router 1 Router 2

10Mbps, 2msec

1.5Mbps, 5msec
10Mbps, 33msec

Data Stream

Reverse Traffic (Reno)

Source B

Source A

10Mbps, 3msec

Figure 10. Traffic on the reverse link

path. In addition, ACK losses also delay the detection of packet
losses at the source, which is waiting for three duplicate ACKs to
perform a retransmission. In contrast, Figure 11 (b) shows that the
congestion window for TCP Santa Cruz (

�����
= 5) is relatively un-

affected by the Reno traffic on the reverse path and reaches the op-
timal window size of around 22 packets, demonstrating TCP Santa
Cruz’s ability to maintain a full data pipe along the forward path in
the presence of congestion on the reverse path.

Table 3 shows the throughput and delay obtained for Reno,
Santa Cruz and Vegas. Santa Cruz achieves up to a 68% improve-
ment in throughput compared to Reno and a 78% improvement over
Vegas. Because of the nearly constant window size, the variation
delay with our algorithm is considerably lower than Reno. Vegas
suffers from low throughput in this case because its algorithm is un-
able to maintain a good throughput estimate because of high varia-
tion in RTT measurements. Vegas exhibits low delay primarily due
to its low utilization of the bottleneck link; this insures that packets
are never queued at the bottleneck and therefore do not incur any
additional queueing delay from source to destination.

 � � � � ��� � � ��������� � � ���

In this section we investigate performance over networks that ex-
hibit asymmetry, e.g., ADSL, HFC or combination networks, which

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 p

ac
ke

ts

Time(sec)

Reno: congestion window

cwnd

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 p

ac
ke

ts

Time(sec)

Santa Cruz: congestion window

cwnd

(a) (b)

Figure 11. Comparison of congestion window growth when TCP-Reno traffic is present on the reverse path: (a) Reno (b) TCP
Santa Cruz n=5

Comparison of Throughput and Average Delay
Protocol Throughput Utilization Ave. delay Delay variance

(Mbps) (msec) (msec)
Reno 0.823 0.55 134.3 56.2

SC n=1.5 1.213 0.81 54.8 0.0034
SC n=3 1.312 0.87 60.6 0.0057
SC n=5 1.390 0.92 73.4 0.0080

Vegas (1,3) 0.778 0.52 49.5 0.0016

Table 3. Throughput, delay and delay variance compar-
isons with traffic on the reverse link.

may have a high bandwidth cable downstream link and a slower
telephone upstream link. TCP has been shown to perform poorly
over asymmetric links [11] primarily because of ACK loss, which
causes burstiness at the source (the size of the bursts are propor-
tional to the degree of asymmetry) and leads to buffer overflow
along the higher bandwidth forward path; and also reduced through-
put because of slow window growth at the source due to lost ACK
packets. Lakshman et. al. [11] define the normalized asymmetry
� of a path as the ratio of the transmission capacity of data packets
on the forward path to ACK packets on the reverse path. This is
an important measurement because it means the source puts out �
times as many data packets as the reverse link has capacity. Once
the queues in the reverse path fill, only one ACK out of � will make
it back to the receiver. Each ACK that does arrive at the source
then generates a burst of � packets in the forward path. In addition,
during congestion avoidance, the window growth will be slowed by� $ � as compared to a symmetric connection.

Source Receiver

24Mbps, 3msec

320Kbps, 1msec

Figure 12. Simulation configuration for asymmetric links

The simulation configuration depicted in Figure 12 has been
studied by Lakshman et. al. in detail and is used here to exam-
ine performance. In this configuration the forward buffer,

���
�

9 packets. Using 1 Kbyte data packets this results in a normalized
asymmetry factor � �

�
.

Figure 13 (a) shows the congestion window growth for Reno.
Because of the burstiness of the connection due to ACK loss, there
are several lost data packets per window of data, causing Reno to
suffer timeouts every cycle (that is why the congestion window re-
duces to 1 packet). Figure 13 (b) shows the development of the

window with TCP Santa Cruz. In this case, the congestion window
settles a few packets above the BWDP (equal to 31 packets) of the
connection.

�
During slow start there is an initial overshoot

of the window size during one round-trip time delay, i.e., the final
round before the algorithm picks up the growing queue, a burst of
packets is sent, which ultimately overflows the buffer.

A comparison of the overall throughput and delay obtained by
a Reno, Vegas and Santa Cruz (

�����
�
��� �

,
�����

�
�

and
�����

�
�
)

sources is shown below in Table 4. This table shows that Reno and
Vegas are unable to achieve link utilization above 52%. Because
of the burstiness of the data traffic, Santa Cruz needs an operating
point of at least

� ���
�
�

in order to achieve high throughput. For�����
�
�

and
��� �

�
�

Santa Cruz is able to achieve 99% link
utilization. The end-to-end delays for Reno are around twice that
of Santa Cruz and the delay variance is seven orders of magnitude
greater than Santa Cruz. Because Vegas has such low link utiliza-
tion the queues are generally empty, thus there is a very low delay
and no appreciable delay variance.

Comparison of Throughput and Average Delay
Protocol Throughput Utilization Ave. delay Delay variance

(Mbps) (msec) (� sec)
Reno 1.253 0.52 8.4 1400

SC n=1.5 1.275 0.53 3.5 0.0004
SC n=3 23.72 0.99 4.6 0.0003
SC n=5 23.73 0.99 4.8 0.0003

Vegas (1,3) 0.799 0.33 3.3 0.0000

Table 4. Throughput, delay and delay variance over
asymmetric links.

� � � � ��! � �	��� �

We have presented TCP Santa Cruz, which implements a new ap-
proach to end-to-end congestion control and reliability, and that can
be implemented as a TCP option. TCP Santa Cruz makes use of a
simple timestamp returned from the receiver to estimate the level
of queueing in the bottleneck link of a connection. The protocol
successfully isolates the forward throughput of the connection from
events on the reverse link by considering the changes in delay along
the forward link only. We successfully decouple the growth of the
congestion window from the number of returned ACKs (the ap-
proach taken by TCP), which makes the protocol resilient to ACK
loss. The protocol provides quick and efficient error-recovery by
identifying losses via an ACK window without waiting for three
�

See Lakshman et. al. [11] for a detailed analysis of the calculation of the BWDP.

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 p

ac
ke

ts

Time(sec)

Reno: congestion window

cwnd

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 p

ac
ke

ts

Time(sec)

Santa Cruz: congestion window

cwnd

(a) (b)

Figure 13. Comparison of congestion window growth: (a) Reno (b) TCP Santa Cruz

duplicate ACKs. An RTT estimate for every packet transmitted (in-
cluding retransmissions) allows the protocol to recover from lost
retransmissions without using timer-backoff strategies, eliminating
the need for Karn’s algorithm.

Simulation results show that TCP Santa Cruz provides high
throughput and low end-to-end delay and delay variance over net-
works with a simple bottleneck link, networks with congestion in
the reverse path of the connection, and networks which exhibit path
asymmetry. We have shown that TCP Santa Cruz eliminates the
oscillations in the congestion window, but still maintains high link
utilization. As a result, it provides much lower delays than current
TCP implementations. For the simple bottleneck configuration our
protocol provides a 20% – 45% improvement in end-to-end delay
(depending on the value of

�����
) and a delay variance three orders

of magnitude lower than Reno. For experiments with congestion
on the reverse path, TCP Santa Cruz provides an improvement in
throughput of at least 47% – 67% over both Reno and Vegas, as
well as an improvement in end-to-end delay of 45% – 59% over
Reno with a reduction in delay variance of three orders of magni-
tude. When we examine networks with path asymmetry, Reno and
Vegas achieve link utilization of only 52% and 33%, respectively,
whereas Santa Cruz achieves 99% utilization. End-to-end delays
for this configuration are also reduced by 42% – 58% over Reno.

Our simulation experiments indicate that our end-to-end ap-
proach to congestion control and error recovery is very promising,
and our current work focuses on evaluating the fairness of TCP
Santa Cruz, its coexistence with other TCP implementations, and
its performance over wireless networks.

� � � � � � ��� � � � �

[1] H. Balakrishnan, S. Seshan, and R. Katz. Improving reliable transport
and handoff performance in cellular wireless networks. ACM Wireless
Networks, Dec. 1995.

[2] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New tech-
niques for congestion detection and avoidance. In Proc. SIGCOMM’94,
pages –, London, UK, Aug./Sept. 1994. ACM.

[3] L. Brakmo and L. Peterson. TCP Vegas: End-to-end congestion avoid-
ance on a global internet. In IEEE Journal of Selected Areas in Com-
munication, October, 1995.

[4] D. Clark, M. Lambert, and L. Zhang. NETBLT: A high throughput
transfer protocol. In Proc. SIGCOMM, pages 353–59, Stowe, Vermont,
Aug. 1987. ACM.

[5] K. Fall and S. Floyd. Simulation-based comparisons of tahoe,reno, and
SACK TCP. In Computer Communication Review, volume 26 No. 3,
pages 5 – 21, July, 1996.

[6] S. Floyd and V. Jacobson. Random Early Detection gateways for con-
gestion avoidance. IEEE/ACM Transactions on Networking, 4(1):397–
413, Aug 1993.

[7] R. Jacobson, R. Braden, and D. Borman. Rfc 1323 TCP extensions for
high performance. Technical report, May 1992. Technical Report 1323.

[8] V. Jacobson and S. Floyd. TCP and explicit congestion notification.
In Computer Communication Review, volume 24 No. 5, pages 8 – 23,
October, 1994.

[9] P. Karn and C. Partridge. Improving round-trip time estimates in reli-
able transport protocols. In Computer Communication Review, volume
17 No. 5, pages 2 – 7, August 1987.

[10] S. Keshav. Packet-pair flow control.
http://www.cs.cornell.edu/skeshav/papers.html.

[11] T. Lakshman, U. Madhow, and B. Suter. Window-based error recovery
and flow control with a slow acknowledgement channel: a study of
TCP/IP performance. In Proceedings IEEE INFOCOM ’97, number 3,
pages 1199–209, Apr 1997.

[12] D. Lin and H. Kung. TCP fast recovery strategies: Analysis and im-
provements. In Proceedings IEEE INFOCOM ’98, Apr. 1998.

[13] L.Kalampoukas, A. Varma, and K. Ramakrishnan. Explicit window
adaptation: a method to enhance TCP performance. In Proceedings
IEEE INFOCOM ’98, pages 242 – 251, Apr. 1998.

[14] M. Mathis and J. Mahdavi. Forward acknowledgment: Refining TCP
congestion control. In Proc. SIGCOMM’96, pages 1–11, Stanford, Cal-
ifornia, Sept. 1996.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective
acknowledgment options. Technical report, Oct. 1996. RFC 2018.

[16] S. McCanne and S. Floyd. ns-lbnl network simulator. http://www-
nrg.ee.lbl.gov/ns/.

[17] C. Parsa and J. Garcia-Luna-Aceves. Improving TCP performance over
wireless networks at the link layer. ACM Mobile Networks and Appli-
cations Journal, 1999. to appear.

[18] N. Samaraweera and G. Fairhurst. Explicit loss indication and accurate
RTO estimation for TCP error recovery using satellite links. In IEE
Proceedings - Communications, volume 144 No. 1, pages 47 – 53, Feb.,
1997.

[19] W. R. Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley, 1996.
[20] J. Waldby, U. Madhow, and T. Lakshman. Total acknowledgements:

a robust feedback mechanism for end-to-end congestion control. In
Sigmetrics ’98 Performance Evaluation Review, volume 26, 1998.

[21] Z. Wang and J. Crowcroft. Eliminating periodic packet losses in the
4.3-Tahoe BSD TCP congestion control algorithm. In Computer Com-
munication Review, volume 22 No. 2, pages 9 – 16, April, 1992.

[22] Z. Wang and J. Crowcroft. A new congestion control scheme: Slow
start and search (Tri-S). In Computer Communication Review, volume
21 No. 1, pages 32 – 43, Jan., 1991.

