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Abstract

This document is a guide to understanding how the Linux kernel (version 2.2.14
specifically) implements networking protocols, focused primarily on the Internet Protocol
(IP). It is intended as a complete reference for experimenters with overviews,
walk-throughs, source code explanations, and examples. The first part contains an in-depth
examination of the code, data structures, and functionality involved with networking.
There are chapters on initialization, connections and sockets, and receiving, transmitting,
and forwarding packets. The second part contains detailed instructions for modifiying the
kernel source code and installing new modules. There are chapters on kernel installation,
modules, the proc file system, and a complete example.
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Chapter 1

Introduction

This is version 1.0 of this document, dated May 31, 2000, referencing the Linux kernel
version 2.2.14.

1.1 Background

Linux is becoming more and more popular as an alternative operating system. Since it is
freely available to everyone as part of the open source movement, literally thousands of
programmers are constantly working on the code to implement new features, improve
existing ones, and fix bugs and inefficiencies in the code. There are many sources for
learning more about Linux, from the source code itself (downloadable from the Internet) to
books to “HOW-TOs” and message boards maintained on many different subjects.

This document is an effort to bring together many of these sources into one coherent
reference on and guide to modifying the networking code within the Linux kernel. Tt
presents the internal workings on four levels: a general overview, more specific
examinations of network activities, detailed function walk-throughs, and references to the
actual code and data structures. It is designed to provide as much or as little detail as the
reader desires. This guide was written specifically about the Linux 2.2.14 kernel (which has
already been superseded by 2.2.15) and many of the examples come from the Red Hat 6.1
distribution; hopefully the information provided is general enough that it will still apply
across distributions and new kernels. It also focuses almost exclusively on TCP/UDP, IP,
and Ethernet - which are the most common but by no means the only networking protocols
available for Linux platforms.

As a reference for kernel programmers, this document includes information and pointers on
editing and recompiling the kernel, writing and installing modules, and working with the
/proc file system. It also presents an example of a program that drops packets for a
selected host, along with analysis of the results. Between the descriptions and the
examples, this should answer most questions about how Linux performs networking



operations and how you can modify it to suit your own purposes.

This project began in a Computer Science Department networking lab at the University of
New Hampshire as an effort to institute changes in the Linux kernel to experiment with
different routing algorithms. It quickly became apparent that blindly hacking the kernel
was not a good idea, so this document was born as a research record and a reference for
future programmers. Finally it became large enough (and hopefully useful enough) that we
decided to generalize it, formalize it, and release it for public consumption.

As a final note, Linux is an ever-changing system and truly mastering it, if such a thing is
even possible, would take far more time than has been spent putting this reference together.
If you notice any misstatements, omissions, glaring errors, or even typos (!) within this
document, please contact the person who is currently maintaining it. The goal of this
project has been to create a freely available and useful reference for Linux programmers.

1.2 Document Conventions

It is assumed that the reader understands the C programming language and is acquainted
with common network protocols. This is not vital for the more general information but the
details within this document are intended for experienced programmers and may be
incomprehensible to casual Linux users.

Almost all of the code presented requires superuser access to implement. Some of the
examples can create security holes where none previously existed; programmers should be
careful to restore their systems to a normal state after experimenting with the kernel.

File references and program names are written in a slanted font.
Code, command line entries, and machine names are written in a typewriter font.

Generic entries or variables (such as an output filename) and comments are written in an
italic font.

1.3 Sample Network Example

There are numerous examples in this document that help clarify the presented material.
For the sake of consistency and familiarity, most of them reference the sample network
shown in Figure 1.1.

This network represents the computer system at a fictional unnamed University (U!). It
has a router connected to the Internet at large (chrysler). That machine is connected
(through the jeep interface) to the campus-wide network, u.edu, consisting of computers
named for Chrysler owned car companies (dodge, eagle, etc.). There is also a LAN subnet
for the computer science department, cs.u.edu, whose hosts are named after Dodge



chrysler
172.16.0.254

jeep
u.edu network 172.16.0.1
network 172.16.0.0 etho

netmask 255.255.0.0
*—o

iy

o

dodge eagle plymouth
172.16.0.7 172.16.0.34 172.16.0.128
ethl ethO ethO
viper
172.16.1.1 cs.u.edu subnet
etho network 172.16.1.0

netmask 255.255.255.0

r—e—o . o

stealth neon ram intrepid
172.16.1.4 172.16.1.5 172.16.1.6 172.16.1.16
ethO ethO ethO ethO

dodgelviper routes between cs.u.edu and u.edu networks
chrysler/jeep routes between u.edu network and the rest of the Internet

Figure 1.1: Sample network structure.

vehicle models (stealth, neon, etc.). They are connected to the campus network by the
dodge/viper computer. Both the u.edu and cs.u.edu networks use Ethernet hardware
and protocols.

This is obviously not a real network. The IP addresses are all taken from the block reserved
for class B private networks (that are not guaranteed to be unique). Most real class B
networks would have many more computers, and a network with only eight computers
would probably not have a subnet. The connection to the Internet (through chrysler)
would usually be via a T1 or T3 line, and that router would probably be a “real” router
(i.e. a Cisco Systems hardware router) rather than a computer with two network cards.
However, this example is realistic enough to serve its purpose: to illustrate the the Linux
network implementation and the interactions between hosts, subnets, and networks.



1.4 Copyright, License, and Disclaimer

Copyright (c) 2000 by Glenn Herrin. This document may be freely reproduced in whole or
in part provided credit is given to the author with a line similar to the following:

Copied from Linux IP Networking, available at
http://original.source/location.

(The visibility of the credit should be proportional to the amount of the document
reproduced!) Commercial redistribution is permitted and encouraged. All modifications of
this document, including translations, anthologies, and partial documents, must meet the
following requirements:

1. Modified versions must be labeled as such.
2. The person making the modifications must be identified.
3. Acknowledgement of the original author must be retained.

4. The location of the original unmodified document be identified.

5. The original author’s name may not be used to assert or imply endorsement of the
resulting document without the original author’s permission.

Please note any modifications including deletions.

This is a variation (changes are intentional) of the Linux Documentaion Project (LDP)
License available at:

http://www.linuxdoc.org/COPYRIGHT .html

This document is not currently part of the LDP, but it may be submitted in the future.

This document is distributed in the hope that it will be useful but (of course)without any
given or implied warranty of fitness for any purpose whatsoever. Use it at your own risk.
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Chapter 2

Message Traffic Overview

This chapter presents an overview of the entire Linux messaging system. It provides a
discussion of configurations, introduces the data structures involved, and describes the
basics of IP routing.

2.1 The Network Traffic Path

The Internet Protocol (IP) is the heart of the Linux messaging system. While Linux (more
or less) strictly adheres to the layering concept - and it is possible to use a different
protocol (like ATM) - IP is almost always the nexus through which packets flow. The IP
implementation of the network layer performs routing and forwarding as well as
encapsulating data. See Figure 2.1 for a simplified diagram of how network packets move
through the Linux kernel.

When an application generates traffic, it sends packets through sockets to a transport layer
(TCP or UDP) and then on to the network layer (IP). In the IP layer, the kernel looks up
the route to the host in either the routing cache or its Forwarding Information Base (FIB).
If the packet is for another computer, the kernel addresses it and then sends it to a link
layer output interface (typically an Ethernet device) which ultimately sends the packet out
over the physical medium.

When a packet arrives over the medium, the input interface receives it and checks to see if
the packet is indeed for the host computer. If so, it sends the packet up to the IP layer,
which looks up the route to the packet’s destination. If the packet has to be forwarded to
another computer, the IP layer sends it back down to an output interface. If the packet is
for an application, it sends it up through the transport layer and sockets for the application
to read when it is ready.

Along the way, each socket and protocol performs various checks and formatting functions,
detailed in later chapters. The entire process is implemented with references and jump
tables that isolate each protocol, most of which are set up during initialization when the
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Figure 2.1: Abstraction of the Linux message traffic path.



computer boots. See Chapter 3 for details of the initialization process.

2.2 The Protocol Stack

Network devices form the bottom layer of the protocol stack; they use a link layer protocol
(usually Ethernet) to communicate with other devices to send and receive traffic. Input
interfaces copy packets from a medium, perform some error checks, and then forward them
to the network layer. Output interfaces receive packets from the network layer, perform
some error checks, and then send them out over the medium.

IP is the standard network layer protocol. It checks incoming packets to see if they are for
the host computer or if they need to be forwarded. It defragments packets if necessary and
delivers them to the transport protocols. It maintains a database of routes for outgoing
packets; it addresses and fragments them if necessary before sending them down to the link
layer.

TCP and UDP are the most common transport layer protocols. UDP simply provides a
framework for addressing packets to ports within a computer, while TCP allows more
complex connection based operations, including recovery mechanisms for packet loss and
traffic management implementations. Either one copies the packet’s payload between user
and kernel space. However, both are just part of the intermediate layer between the
applications and the network.

IP Specific INET Sockets are the data elements and implementations of generic sockets.
They have associated queues and code that executes socket operations such as reading,
writing, and making connections. They act as the intermediary between an application’s
generic socket and the transport layer protocol.

Generic BSD Sockets are more abstract structures that contain INET sockets. Applications
read from and write to BSD sockets; the BSD sockets translate the operations into INET
socket operations. See Chapter 4 for more on sockets.

Applications, run in user space, form the top level of the protocol stack; they can be as
simple as two-way chat connection or as complex as the Routing Information Protocol
(RIP - see Chapter 9).

2.3 Packet Structure

The key to maintaining the strict layering of protocols without wasting time copying
parameters and payloads back and forth is the common packet data structure (a socket
buffer, or sk_buff - Figure 2.2). Throughout all of the various function calls as the data
makes it way through the protocols, the payload data is copied only twice; once from user
to kernel space and once from kernel space to output medium (for an outbound packet).



sk pointer to owning socket

stamp arrival time

dev pointer to receiving/transmitting device

h pointer to transport layer header

nh pointer to network layer header
mac pointer to link layer header

dst pointer to dst_entry

cb TCP per-packet control information
len actual data length

csum checksum

protocol | packet network protocol

truesize | buffer size

head pointer to head of buffer
data pointer to data head

tail pointer to tail

end pointer to end

destructor | pointer to destruct function

Figure 2.2: Packet (sk_buff) structure.

This structure contains pointers to all of the information about a packet - its socket,
device, route, data locations, etc. Transport protocols create these packet structures from
output buffers, while device drivers create them for incoming data. Each layer then fills in
the information that it needs as it processes the packet. All of the protocols - transport
(TCP/UDP), internet (IP), and link level (Ethernet) - use the same socket buffer.

2.4 Internet Routing

The IP layer handles routing between computers. It keeps two data structures; a
Forwarding Information Base (FIB) that keeps track of all of the details for every known
route, and a faster routing cache for destinations that are currently in use. (There is also a
third structure - the neighbor table - that keeps track of computers that are physically
connected to a host.)

The FIB is the primary routing reference; it contains up to 32 zones (one for each bit in an
IP address) and entries for every known destination. Each zone contains entries for
networks or hosts that can be uniquely identified by a certain number of bits - a network
with a netmask of 255.0.0.0 has 8 significant bits and would be in zone 8, while a network
with a netmask of 255.255.255.0 has 24 significant bits and would be in zone 24. When TP



needs a route, it begins with the most specific zones and searches the entire table until it
finds a match (there should always be at least one default entry). The file /proc/net/route
has the contents of the FIB.

The routing cache is a hash table that IP uses to actually route packets. It contains up to
256 chains of current routing entries, with each entry’s position determined by a hash
function. When a host needs to send a packet, IP looks for an entry in the routing cache.
If there is none, it finds the appropriate route in the FIB and inserts a new entry into the
cache. (This entry is what the various protocols use to route, not the FIB entry.) The
entries remain in the cache as long as they are being used; if there is no traffic for a
destination, the entry times out and IP deletes it. The file /proc/net/rt_cache has the
contents of the routing cache.

These tables perform all the routing on a normal system. Even other protocols (such as
RIP) use the same structures; they just modify the existing tables within the kernel using
the ioct1() function. See Chapter 8 for routing details.
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Chapter 3

Network Initialization

This chapter presents network initialization on startup. It provides an overview of what
happens when the Linux operating system boots, shows how the kernel and supporting
programs ifconfig and route establish network links, shows the differences between several
example configurations, and summarizes the implementation code within the kernel and
network programs.

3.1 Overview

Linux initializes routing tables on startup only if a computer is configured for networking.
(Almost all Linux machines do implement networking, even stand-alone machines, if only
to use the loopback device.) When the kernel finishes loading itself, it runs a set of
common but system specific utility programs and reads configuration files, several of which
establish the computer’s networking capabilities. These determine its own address,
initialize its interfaces (such as Ethernet cards), and add critical and known static routes
(such as one to a router that connects it with the rest of the Internet). If the computer is
itself a router, it may also execute a program that allows it to update its routing tables
dynamically (but this is NOT run on most hosts).

The entire configuration process can be static or dynamic. If addresses and names never
(or infrequently) change, the system administrator must define options and variables in
files when setting up the system. In a more mutable environment, a host will use a
protocol like the Dynamic Hardware Configuration Protocol (DHCP) to ask for an address,
router, and DNS server information with which to configure itself when it boots. (In fact,
in either case, the administrator will almost always use a GUI interface - like Red Hat’s
Control Panel - which automatically writes the configuration files shown below.)

An important point to note is that while most computers running Linux start up the same
way, the programs and their locations are not by any means standardized; they may vary
widely depending on distribution, security concerns, or whim of the system administrator.

11



This chapter presents as generic a description as possible but assumes a Red Hat Linux 6.1
distribution and a generally static network environment.

3.2 Startup

When Linux boots as an operating system, it loads its image from the disk into memory,
unpacks it, and establishes itself by installing the file systems and memory management
and other key systems. As the kernel’s last (initialization) task, it executes the init
program. This program reads a configuration file (/etc/inittab) which directs it to execute
a startup script (found in /etc/rc.d on Red Hat distributions). This in turn executes more
scripts, eventually including the network script (/etc/rc.d/init.d/network). (See Section 3.3
for examples of the script and file interactions.)

3.2.1 The Network Initialization Script

The network initialization script sets environment variables to identify the host computer
and establish whether or not the computer will use a network. Depending on the values
given, the network script turns on (or off) IP forwarding and IP fragmentation. It also
establishes the default router for all network traffic and the device to use to send such
traffic. Finally, it brings up any network devices using the ifconfig and route programs. (In
a dynamic environment, it would query the DHCP server for its network information
instead of reading its own files.)

The script(s) involved in establishing networking can be very straightforward; it is entirely
possible to have one big script that simply executes a series of commands that will set up a
single machine properly. However, most Linux distributions come with a large number of
generic scripts that work for a wide variety of machine setups. This leaves a lot of
indirection and conditional execution in the scripts, but actually makes setting up any one
machine much easier. For example, on Red Hat distributions, the /etc/rc.d/init.d/network
script runs several other scripts and sets up variables like interfaces_boot to keep track
of which /etc/sysconfig/network-scripts/ifup scripts to run. Tracing the process manually
is very complicated, but simple modifications of only two configuration files (putting the
proper names and IP addresses in the /etc/sysconfig/network and
/etc/sysconfig/network-scripts/ifcfg-eth0 files) sets up the entire system properly (and a
GUI makes the process even simpler).

When the network script finishes, the FIB contains the specified routes to given hosts or
networks and the routing cache and neighbor tables are empty. When traffic begins to flow,
the kernel will update the neighbor table and routing cache as part of the normal network
operations. (Network traffic may begin during initialization if a host is dynamically
configured or consults a network clock, for example.)

12



3.2.2 ifconfig

The ifconfig program configures interface devices for use. (This program, while very widely
used, is not part of the kernel.) It provides each device with its (IP) address, netmask, and
broadcast address. The device in turn will run its own initialization functions (to set any
static variables) and register its interrupts and service routines with the kernel. The
ifconfig commands in the network script look like this:

ifconfig ${DEVICE} ${IPADDR} netmask ${NMASK} broadcast ${BCAST}

(where the variables are either written directly in the script or are defined in other scripts).

The ifconfig program can also provide information about currently configured network
devices (calling with no arguments displays all the active interfaces; calling with the -a
option displays all interfaces, active or not):

ifconfig

This provides all the information available about each working interface; addresses, status,
packet statistics, and operating system specifics. Usually there will be at least two
interfaces - a network card and the loopback device. The information for each interface
looks like this (this is the viper interface):

ethO Link encap:Ethernet HWaddr 00:C1:4E:7D:9E:25
inet addr:172.16.1.1 Bcast:172.16.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:389016 errors:16534 dropped:0 overruns:0 frame:24522
TX packets:400845 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:11 Base address:0xcc00

A superuser can use ifconfig to change interface settings from the command line; here is the
syntax:

ifconfig interface [aftype] options | address ...
. and some of the more useful calls:

ifconfig ethO down - shut down ethO

ifconfig ethl up - activate ethl

ifconfig ethO arp - enable ARP on ethO

ifconfig ethO -arp - disable ARP on eth0

ifconfig ethO netmask 255.255.255.0 - set the ethO netmask
ifconfig lo mtu 2000 - set the loopback maximum transfer unit
ifconfig ethl 172.16.0.7 - set the ethl IP address

13



Note that modifying an interface configuration can indirectly change the routing tables.
For example, changing the netmask may make some routes moot (including the default or
even the route to the host itself) and the kernel will delete them.

3.2.3 route

The route program simply adds predefined routes for interface devices to the Forwarding
Information Base (FIB). This is not part of the kernel, either; it is a user program whose
command in the script looks like this:

route add -net ${NETWORK} netmask ${NMASK} dev ${DEVICE} -or-
route add -host ${IPADDR} ${DEVICE}

(where the variables are again spelled out or defined in other scripts).

The route program can also delete routes (if run with the del option) or provide
information about the routes that are currently defined (if run with no options):

route

This displays the Kernel IP routing table (the FIB, not the routing cache). For example
(the stealth computer):

Kernel IP routing table

Destination  Gateway Genmask Flags Metric Ref Use Iface
172.16.1.4 * 255.255.2565.255 UH 0 0 0 ethO
172.16.1.0 * 255.2556.265.0 U 0 0 0 ethO
127.0.0.0 * 255.0.0.0 U 0 0 0 1o

default viper.u.edu 0.0.0.0 UG 0 0 0 etho

A superuser can use route to add and delete IP routes from the command line; here is the
basic syntax:

route add [-net|-host] target [option arg]
route del [-net|-host] target [option arg]

. and some useful examples:

route add -host 127.16.1.0 ethl - adds a route to a host

route add -net 172.16.1.0 netmask 255.255.255.0 ethO - adds a network
route add default gw jeep - sets the default route through jeep

(Note that a route to jeep must already be set up)

route del -host 172.16.1.16 - deletes entry for host 172.16.1.16
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3.2.4 Dynamic Routing Programs

If the computer is a router, the network script will run a routing program like routed or
gated. Since most computers are always on the same hard-wired network with the same set
of addresses and limited routing options, most computers do not run one of these
programs. (If an Ethernet cable is cut, traffic simply will not flow; there is no need to try
to reroute or adjust routing tables.) See Chapter 9 for more information about routed.

3.3 Examples

The following are examples of files for systems set up in three different ways and
explanations of how they work. Typically every computer will execute a network script
that reads configuration files, even if the files tell the computer not to implement any
networking.

3.3.1 Home Computer

These files would be on a computer that is not permanently connected to a network, but
has a modem for ppp access. (This section does not reference a computer from the general
example.)

This is the first file the network script will read; it sets several environment variables. The
first two variables set the computer to run networking programs (even though it is not on a
network) but not to forward packets (since it has nowhere to send them). The last two
variables are generic entries.

/etc/sysconfig/network

NETWORKING=yes
FORWARD_IPV4=false
HOSTNAME=1ocalhost.localdomain
GATEWAY=

After setting these variables, the network script will decide that it needs to configure at
least one network device in order to be part of a network. The next file (which is almost
exactly the same on all Linux computers) sets up environment variables for the loopback
device. It names it and gives it its (standard) IP address, network mask, and broadcast
address as well as any other device specific variables. (The ONBOOT variable is a flag for
the script program that tells it to configure this device when it boots.) Most computers,
even those that will never connect to the Internet, install the loopback device for
inter-process communication.

/etc/sysconfig/network-scripts /ifcfg-lo
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DEVICE=1o
IPADDR=127.0.0.1
NMASK=255.0.0.0
NETWORK=127.0.0.0
BCAST=127.255.255.255
ONBOOT=yes
NAME=1oopback
BOOTPROTO=none

After setting these variables, the script will run the ifconfig program and stop, since there
is nothing else to do at the moment. However, when the ppp program connects to an
Internet Service Provider, it will establish a ppp device and addressing and routes based on
the dynamic values assigned by the ISP. The DNS server and other connection information
should be in an ifcfg-ppp file.

3.3.2 Host Computer on a LAN

These files would be on a computer that is connected to a LAN; it has one Ethernet card
that should come up whenever the computer boots. These files reflect entries on the
stealth computer from the general example.

This is the first file the network script will read; again the first variables simply determine
that the computer will do networking but that it will not forward packets. The last four
variables identify the computer and its link to the rest of the Internet (everything that is
not on the LAN).

/etc/sysconfig/network

NETWORKING=yes
FORWARD_IPV4=false
HOSTNAME=stealth.cs.u.edu
DOMAINNAME=cs.u.edu
GATEWAY=172.16.1.1
GATEWAYDEV=ethO

After setting these variables, the network script will configure the network devices. This
file sets up environment variables for the Ethernet card. It names the device and gives it
its IP address, network mask, and broadcast address as well as any other device specific
variables. This kind of computer would also have a loopback configuration file exactly like
the one for a non-networked computer.

/etc/sysconfig/network-scripts/ifcfg-eth(

DEVICE=ethO

16



IPADDR=172.16.1.4
NMASK=255.255.255.0
NETWORK=172.16.1.0
BCAST=172.16.1.255
ONBOOT=yes
BOOTPROTO=none

After setting these variables, the network script will run the ifconfig program to start the
device. Finally, the script will run the route program to add the default route (GATEWAY)
and any other specified routes (found in the /etc/sysconfig/static-routes file, if any). In
this case only the default route is specified, since all traffic either stays on the LAN (where
the computer will use ARP to find other hosts) or goes through the router to get to the
outside world.

3.3.3 Network Routing Computer

These files would be on a computer that serves as a router between two networks; it has
two Ethernet cards, one for each network. One card is on a large network (WAN)
connected to the Internet (through yet another router) while the other is on a subnetwork
(LAN). Computers on the LAN that need to communicate with the rest of the Internet
send traffic through this computer (and vice versa). These files reflect entries on the
dodge/viper computer from the general example.

This is the first file the network script will read; it sets several environment variables. The
first two simply determine that the computer will do networking (since it is on a network)
and that this one will forward packets (from one network to the other). IP Forwarding is
built into most kernels, but it is not active unless there is a 1 “written” to the
/proc/net/ipvd/ip_forward file. (One of the network scripts performs an echo 1 >
/proc/net/ipv4/ip_forward if FORWARD _IPV4 is true.) The last four variables identify the
computer and its link to the rest of the Internet (everything that is not on one of its own
networks).

/etc/sysconfig/network

NETWORKING=yes
FORWARD_IPV4=true
HOSTNAME=dodge .u.edu
DOMAINNAME=u.edu
GATEWAY=172.16.0.1
GATEWAYDEV=ethl

After setting these variables, the network script will configure the network devices. These
files set up environment variables for two Ethernet cards. They name the devices and give
them their TP addresses, network masks, and broadcast addresses. (Note that the
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BOOTPROTO variable remains defined for the second card.) Again, this computer would
have the standard loopback configuration file.

/etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=ethO
IPADDR=172.16.1.1
NMASK=255.255.255.0
NETWORK=172.16.1.0
BCAST=172.16.1.255
ONBOOT=yes
BOOTPROTO=static

/etc/sysconfig/network-scripts /ifcfg-eth1

DEVICE=ethl
IPADDR=172.16.0.7
NMASK=255.255.0.0
NETWORK=172.16.0.0
BCAST=172.16.255.255
ONBOOT=yes

After setting these variables, the network script will run the ifconfig program to start each
device. Finally, the script will run the route program to add the default route (GATEWAY)
and any other specified routes (found in the /etc/sysconfig/static-routes file, if any). In
this case again, the default route is the only specified route, since all traffic will go on the
network indicated by the network masks or through the default router to reach the rest of
the Internet.

3.4 Linux and Network Program Functions

The following are alphabetic lists of the Linux kernel and network program functions that
are most important to initialization, where they are in the source code, and what they do.
The SOURCES directory shown represents the directory that contains the source code for
the given network file. The executable files should come with any Linux distrbution, but
the source code probably does not.

These sources are available as a package separate from the kernel source (Red Hat Linux
uses the rpm package manager). The code below is from the net-tools-1.53-1 source code
package, 29 August 1999. The packages are available from the
www.redhat.com/apps/download web page. Once downloaded, root can install the package
with the following commands (starting from the directory with the package):
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rpm -i net-tools-1.53-1.src.rpm
cd /usr/src/redhat/SOURCES
tar xzf net-tools-1.53.tar.gz

This creates a /usr/src/redhat/SOURCES /net-tools-1.53 directory and fills it with the
source code for the ifconfig and route programs (among others). This process should be
similar (but is undoubtably not exactly the same) for other Linux distributions.

3.4.1 ifconfig

devinet_ioctl() - net/ipv4/devinet.c (398)
creates an info request (ifreq) structure and copies data from
user to kernel space
if it is an INET level request or action, executes it
if it is a device request or action, calls a device function
copies ifreq back into user memory
returns 0 for success

>>> ifconfig main() - SOURCES/ifconfig.c (478)
opens a socket (only for use with ioctl function)
searches command line arguments for options
calls if_print() if there were no arguments or the only argument
is an interface name
loops through remaining arguments, setting or clearing flags or
calling ioctl() to set variables for the interface

if_fetch() - SOURCES/lib/interface.c (338)
fills in an interface structure with multiple calls to ioctl() for
flags, hardware address, metric, MTU, map, and address information

if_print() - SOURCES/ifconfig.c (121)
calls ife_print() for given (or all) interface(s)
(calls if_readlist() to fill structure list if necessary and
then displays information about each interface)

if_readlist() - SOURCES/lib/interface.c (261)
opens /proc/net/dev and parses data into interface structures
calls add_interface() for each device to put structures into a list

inet_ioctl() - net/ipv4/af_inet.c (855)
executes a switch based on the command passed

[for ifconfig, calls devinet_ioctl()]

ioctl() -
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jumps to appropriate handler routine [= inet_ioctl()]

3.4.2 route

INET_rinput() - SOURCES/lib/inet_sr.c (305)
checks for errors (cannot flush table or modify routing cache)
calls INET_setroute()

INET_rprint() - SOURCES/lib/inet_gr.c (442)
if the FIB flag is set, calls rprint_fib()
(reads, parses, and displays contents of /proc/net/route)
if the CACHE flag is set, calls rprint_cache()
(reads, parses, and displays contents of /proc/met/rt_cache)

INET_setroute() - SOURCE/lib/inet_sr.c (57)
establishes whether route is to a network or a host
checks to see if address is legal
loops through arguments, filling in rtentry structure
checks for netmask conflicts
creates a temporary socket
calls ioctl() with rtentry to add or delete route
closes socket and returns 0O

ioctl() -
jumps to appropriate handler routine [= ip_rt_ioctl()]

ip_rt_ioctl() - net/ipv4/fib_frontend.c (246)
converts passed parameters to routing table entry (struct rtentry)
if deleting a route:
calls fib_get_table() to find the appropriate table
calls the table->tb_delete() function to remove it
if adding a route
calls fib_net_table() to find an entry point
calls the table->tb_insert() function to add the entry
returns 0 for success

>>> route main() - SOURCES/route.c (106)
calls initialization routines that set print and edit functions
gets and parses the command line options (acts on some options
directly by setting flags or displaying information)
checks the options (prints a usage message if there is an error)
if there are no options, calls route_info()
if the option is to add, delete, or flush routes,
calls route_edit() with the passed parameters
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if the option is invalid, prints a usage message
returns result of

route_edit() - SOURCES/lib/setroute.c (69)
calls get_aftype() to translate address family from text to a pointer
checks for errors (unsupported or nonexistent family)
calls the address family rinput() function [= INET_rinput()]

route_info() - SOURCES/lib/getroute.c (72)
calls get_aftype() to translate address family from text to a pointer
checks for errors (unsupported or nonexistent family)
calls the address family rprint() function [= INET_rprint()]
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Chapter 4

Connections

This chapter presents the connection process. It provides an overview of the connection
process, a description of the socket data structures, an introduction to the routing system,
and summarizes the implementation code within the kernel.

4.1 Overview

The simplest form of networking is a connection between two hosts. On each end, an
application gets a socket, makes the transport layer connection, and then sends or receives
packets. In Linux, a socket is actually composed of two socket structures (one that contains
the other). When an application creates a socket, it is initialized but empty. When the
socket makes a connection (whether or not this involves traffic with the other end) the IP
layer determines the route to the distant host and stores that information in the socket.
From that point on, all traffic using that connection uses that route - sent packets will
travel through the correct device and the proper routers to the distant host, and received
packets will appear in the socket’s queue.

4.2 Socket Structures

There are two main socket structures in Linux: general BSD sockets and IP specific INET
sockets. They are strongly interrelated; a BSD socket has an INET socket as a data
member and an INET socket has a BSD socket as its owner.

BSD sockets are of type struct socket as defined in include/linux/socket.h. BSD socket
variables are usually named sock or some variation thereof. This structure has only a few
entries, the most important of which are described below.

e struct proto_ops *ops - this structure contains pointers to protocol specific
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functions for implementing general socket behavior. For example, ops->sendmsg
points to the inet_sendmsg() function.

e struct inode *inode - this structure points to the file inode that is associated with this
socket.

e struct sock *sk - this is the INET socket that is associated with this socket.

INET sockets are of type struct sock as defined in include/net/sock.h. INET socket
variables are usually named sk or some variation thereof. This structure has many entries
related to a wide variety of uses; there are many hacks and configuration dependent fields.
The most important data members are described below:

e struct sock *next, *pprev - all sockets are linked by various protocols, so these
pointers allow the protocols to traverse them.

e struct dst_entry *dst_cache - this is a pointer to the route to the socket’s other
side (the destination for sent packets).

e struct sk buff head receive_queue - this is the head of the receive queue.
e struct sk buff head write_queue - this is the head of the send queue.
e __u32 saddr - the (Internet) source address for this socket.

e struct sk_buff_head back_log,error_queue - extra queues for a backlog of packets
(not to be confused with the main backlog queue) and erroneous packets for this
socket.

e struct proto *prot - this structure contains pointers to transport layer protocol
specific functions. For example, prot->recvmsg may point to the tcp_v4_recvmsg()
function.

e union struct tcp_op af_tcp; tp-pinfo - TCP options for this socket.
e struct socket *sock - the parent BSD socket.

e Note that there are many more fields within this structure; these are only the most
critical and non-obvious. The rest are either not very important or have
self-explanatory names (e.g., ip_ttl is the IP Time-To-Live counter).

4.3 Sockets and Routing

Sockets only go through the routing lookup process once for each destination (at
connection time). Because Linux sockets are so closely related to IP, they contain routes to
the other end of a connection (in the sock->sk->dst_cache variable). The transport
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protocols call the ip_route_connect () function to determine the route from host to host
during the connection process; after that, the route is presumed not to change (though the
path pointed to by the dst_cache may indeed change). The socket does not need to do
continuous routing table look-ups for each packet it sends or receives; it only tries again if
something unexpected happens (such as a neighboring computer going down). This is the
benefit of using connections.

4.4 Connection Processes

4.4.1 Establishing Connections

Application programs establish sockets with a series of system calls that look up the
distant address, establish a socket, and then connect to the machine on the other end.

/* look up host */

server = gethostbyname (SERVER_NAME) ;

/* get socket */

sockfd = socket (AF_INET, SOCK_STREAM, 0);

/* set up address */

address.sin_family = AF_INET;

address.sin_port = htons(PORT_NUM);

memcpy (&¥address.sin_addr,server->h_addr,server->h_length) ;
/* connect to server */

connect (sockfd, &address, sizeof(address));

The gethostbyname() function simply looks up a host (such as “viper.cs.u.edu”) and
returns a structure that contains an Internet (IP) address. This has very little to do with
routing (only inasmuch as the host may have to query the network to look up an address)
and is simply a translation from a human readable form (text) to a computer compatible
one (an unsigned 4 byte integer).

The socket () call is more interesting. It creates a socket object, with the appropriate data
type (a sock for INET sockets) and initializes it. The socket contains inode information
and protocol specific pointers for various network functions. It also establishes defaults for
queues (incoming, outgoing, error, and backlog), a dummy header info for TCP sockets,
and various state information.

Finally, the connect () call goes to the protocol dependent connection routine (e.g.,
tcp_v4_connect () or udp_connect()). UDP simply establishes a route to the destination
(since there is no virtual connection). TCP establishes the route and then begins the TCP
connection process, sending a packet with appropriate connection and window flags set.
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4.4.2 Socket Call Walk-Through

e Check for errors in call

Create (allocate memory for) socket object

Put socket into INODE list

Establish pointers to protocol functions (INET)

Store values for socket type and protocol family

Set socket state to closed

Initialize packet queues

4.4.3 Connect Call Walk-Through

e Check for errors
e Determine route to destination:

— Check routing table for existing entry (return that if one exists)

Look up destination in FIB

Build new routing table entry

— Put entry in routing table and return it

Store pointer to routing entry in socket

Call protocol specific connection function (e.g., send a TCP connection packet)

Set socket state to established

4.4.4 Closing Connections

Closing a socket is fairly straightforward. An application calls close() on a socket, which
becomes a sock_close() function call. This changes the socket state to disconnecting and
calls the data member’s (INET socket’s) release function. The INET socket in turn cleans
up its queues and calls the transport protocol’s close function, tcp_v4_close() or
udp-close(). These perform any necessary actions (the TCP functions may send out
packets to end the TCP connection) and then clean up any data structures they have
remaining. Note that no changes are made for routing; the (now-empty) socket no longer
has a reference to the destination and the entry in the routing cache will remain until it is
freed for lack of use.
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4.4.5 Close Walk-Through

e Check for errors (does the socket exist?)

Change the socket state to disconnecting to prevent further use

Do any protocol closing actions (e.g., send a TCP packet with the FIN bit set)

e Free memory for socket data structures (TCP/UDP and INET)

e Remove socket from INODE list

4.5 Linux Functions

The following is an alphabetic list of the Linux kernel functions that are most important to
connections, where they are in the source code, and what they do. To follow function calls
for creating a socket, begin with sock_create(). To follow function calls for closing a
socket, begin with sock_close().

destroy_sock - net/ipv4/af_inet.c (195)
deletes any timers
calls any protocols specific destroy functions
frees the socket’s queues
frees the socket structure itself

fib_lookup() - include/net/ip_fib.h (153)
calls tb_lookup() [= fn_hash_lookup()] on local and main tables
returns route or unreachable error

fn_hash_lookup() - net/ipv4/fib_hash.c (261)
looks up and returns route to an address

inet_create() - net/ipv4/af_inet.c (326)
calls sk_alloc() to get memory for sock
initializes sock structure:
sets proto structure to appropriate values for TCP or UDP
calls sock_init_data()
sets family,protocol,etc. variables
calls the protocol init function (if any)

inet_release() - net/ipv4/af_inet.c (463)
changes socket state to disconnecting
calls ip_mc_drop_socket to leave multicast group (if necessary)
sets owning socket’s data member to NULL
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calls sk->prot->close() [=TCP/UDP_close()]

ip_route_connect() - include/net/route.h (140)
calls ip_route_output() to get a destination address
returns if the call works or generates an error
otherwise clears the route pointer and try again

ip_route_output() - net/ipv4/route.c (1664)
calculates hash value for address
runs through table (starting at hash) to match addresses and TOS
if there is a match, updates stats and return route entry
else calls ip_route_output_slow()

ip_route_output_slow() - net/ipv4/route.c (1421)
if source address is known, looks up output device
if destination address is unknown, sets up loopback
calls fib_lookup() to find route in FIB
allocates memory new routing table entry
initializes table entry with source, destination, TOS, output device,
flags
calls rt_set_nexthop() to find next destination
returns rt_intern_hash(), which installs route in routing table

rt_intern_hash() - net/ipv4/route.c (526)
loops through rt_hash_table (starting at hash value)
if keys match, put rtable entry in front bucket
else put rtable entry into hash table at hash

>>> sock_close() - net/socket.c (476)
checks if socket exists (could be null)
calls sock_fasync() to remove socket from async list
calls sock_release()

>>> sock_create() - net/socket.c (571)
checks parameters
calls sock_alloc() to get an available inode for the socket and
initialize it
sets socket->type (to SOCK_STREAM, SOCK_DGRAM...)
calls net_family->create() [= inet_create()] to build sock structure
returns established socket

sock_init_data() - net/core/sock.c (1018)
initializes all generic sock values

sock_release() - net/socket.c (309)
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changes state to disconnecting
calls sock->ops->release() [= inet_release()]
calls iput() to remove socket from inode list

sys_socket() - net/socket.c (639)
calls sock_create() to get and initialize socket
calls get_fd() to assign an fd to the socket
sets socket->file to fcheck() (pointer to file)
calls sock_release() if anything fails

tcp_close() - net/ipv4/tcp.c (1502)
check for errors
pops and discards all packets off incoming queue
sends messages to destination to close connection (if required)

tcp_connect() - net/ipv4/tcp_output.c (910)
completes connection packet with appropriate bits and window sizes set
puts packet on socket output queue
calls tcp_transmit_skb() to send packet, initiating TCP connection

tcp_v4_connect() - net/ipv4/tcp_ipvéd.c (571)
checks for errors
calls ip_route_connect() to find route to destination
creates connection packet
calls tcp_connect() to send packet

udp_close() - net/ipv4/udp.c (954)
calls udp_v4_unhash() to remove socket from socket list
calls destroy_sock()

udp_connect() - net/ipv4/udp.c (900)
calls ip_route_connect() to find route to destination
updates socket with source and destination addresses and ports
changes socket state to established
saves the destination route in sock->dst_cache
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Chapter 5

Sending Messages

This chapter presents the sending side of message trafficking. It provides an overview of
the process, examines the layers packets travel through, details the actions of each layer,
and summarizes the implementation code within the kernel.

5.1 Overview

An outgoing message begins with an application system call to write data to a socket. The
socket examines its own connection type and calls the appropriate send routine (typically
INET). The send function verifies the status of the socket, examines its protocol type, and
sends the data on to the transport layer routine (such as TCP or UDP). This protocol
creates a new buffer for the outgoing packet (a socket buffer, or struct sk_buff skb),
copies the data from the application buffer, and fills in its header information (such as port
number, options, and checksum) before passing the new buffer to the network layer
(usually IP). The IP send functions fill in more of the buffer with its own protocol headers
(such as the IP address, options, and checksum). It may also fragment the packet if
required. Next the IP layer passes the packet to the link layer function, which moves the
packet onto the sending device’s xmit queue and makes sure the device knows that it has
traffic to send. Finally, the device (such as a network card) tells the bus to send the packet.

5.2 Sending Walk-Through

5.2.1 Writing to a Socket

e Write data to a socket (application)

e Fill in message header with location of data (socket)
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Figure 5.1: Message transmission.
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e Check for basic errors - is socket bound to a port? can the socket send messages? is
there something wrong with the socket?

e Pass the message header to appropriate transport protocol (INET socket)

5.2.2 Creating a Packet with UDP

e Check for errors - is the data too big? is it a UDP connection?

e Make sure there is a route to the destination (call the IP routing routines if the route
is not already established; fail if there is no route)

Create a UDP header (for the packet)

Call the IP build and transmit function

5.2.3 Creating a Packet with TCP

e Check connection - is it established? is it open? is the socket working?

e Check for and combine data with partial packets if possible

Create a packet buffer

Copy the payload from user space

Add the packet to the outbound queue
e Build current TCP header into packet (with ACKs, SYN, etc.)

Call the IP transmit function

5.2.4 Wrapping a Packet in IP

Create a packet buffer (if necessary - UDP)

Look up route to destination (if necessary - TCP)

Fill in the packet IP header

Copy the transport header and the payload from user space

Send the packet to the destination route’s device output funtion
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5.2.5 Transmitting a Packet

e Put the packet on the device output queue

Wake up the device

Wait for the scheduler to run the device driver

Test the medium (device)

Send the link header

Tell the bus to transmit the packet over the medium

5.3 Linux Functions

The following is an alphabetic list of the Linux kernel functions that are most important to
message traffic, where they are in the source code, and what they do. To follow function
calls, begin with sock write().

dev_queue_xmit() - net/core/dev.c (579)
calls start_bh_atomic()
if device has a queue
calls enqueue() to add packet to queue
calls qdisc_wakeup() [= qdisc_restart()] to wake device
else calls hard_start_xmit()
calls end_bh_atomic()

DEVICE->hard_start_xmit() - device dependent, drivers/net/DEVICE.c
tests to see if medium is open
sends header
tells bus to send packet
updates status

inet_sendmsg() - net/ipv4/af_inet.c (786)
extracts pointer to socket sock
checks socket to make sure it is working
verifies protocol pointer
returns sk->prot[tcp/udpl->sendmsg()

ip_build_xmit - net/ipv4/ip_output.c (604)
calls sock_alloc_send_skb() to establish memory for skb
sets up skb header
calls getfrag() [= udp_getfrag()]l to copy buffer from user space
returns rt->u.dst.output() [= dev_queue_xmit()]
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ip_queue_xmit() - net/ipv4/ip_output.c (234)
looks up route
builds IP header
fragments if required
adds IP checksum
calls skb->dst->output() [= dev_queue_xmit()]

qdisc_restart() - net/sched/sch_generic.c (50)
pops packet off queue
calls dev->hard_start_xmit()
updates status
if there was an error, requeues packet

sock_sendmsg() - net/socket.c (325)
calls scm_sendmsg() [socket control messagel
calls sock->ops[inet]->sendmsg() and destroys scm

>>> sock_write() - net/socket.c (399)
calls socki_lookup() to associate socket with fd/file inode
creates and fills in message header with data size/addresses
returns sock_sendmsg()

tcp_do_sendmsg() - net/ipv4/tcp.c (755)
waits for connection, if necessary
calls skb_tailroom() and adds data to waiting packet if possible
checks window status
calls sock_wmalloc() to get memory for skb
calls csum_and_copy_from_user() to copy packet and do checksum
calls tcp_send_skb()

tcp_send_skb() - net/ipv4/tcp_output.c (160)
calls __skb_queue_tail() to add packet to queue
calls tcp_transmit_skb() if possible

tcp_transmit_skb() - net/ipv4/tcp_output.c (77)
builds TCP header and adds checksum
calls tcp_build_and_update_options()
checks ACKs,SYN
calls tp->af_specific[ip]->queue_xmit ()

tcp_v4_sendmsg() - net/ipv4/tcp_ipvéd.c (668)

checks for IP address type, opens connection, port addresses
returns tcp_do_sendmsg()
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udp_getfrag() - net/ipv4/udp.c (516)
copies and checksums a buffer from user space

udp_sendmsg() - net/ipv4/udp.c (559)
checks length, flags, protocol
sets up UDP header and address info
checks multicast
fills in route
fills in remainder of header
calls ip_build_xmit ()
updates UDP status
returns err
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Chapter 6

Receiving Messages

This chapter presents the receiving side of message trafficking. It provides an overview of
the process, examines the layers packets travel through, details the actions of each layer,
and summarizes the implementation code within the kernel.

6.1 Overview

An incoming message begins with an interrupt when the system notifies the device that a
message is ready. The device allocates storage space and tells the bus to put the message
into that space. It then passes the packet to the link layer, which puts it on the backlog
queue, and marks the network flag for the next “bottom-half” run.

The bottom-half is a Linux system that minimizes the amount of work done during an
interrupt. Doing a lot of processing during an interrupt is not good precisely because it
interrupts a running process; instead, interrupt handlers have a “top-half” and a
“bottom-half”. When the interrupt arrives, the top-half runs and takes care of any critical
operations, such as moving data from a device queue into kernel memory. It then marks a
flag that tells the kernel that there is more work to do - when the processor has time - and
returns control to the current process. The next time the process scheduler runs, it sees the
flag, does the extra work, and only then schedules any normal processes.

When the process scheduler sees that there are networking tasks to do it runs the network
bottom-half. This function pops packets off of the backlog queue, matches them to a
known protocol (typically IP), and passes them to that protocol’s receive function. The IP
layer examines the packet for errors and routes it; the packet will go into an outgoing
queue (if it is for another host) or up to the transport layer (such as TCP or UDP). This
layer again checks for errors, looks up the socket associated with the port specified in the
packet, and puts the packet at the end of that socket’s receive queue.

Once the packet is in the socket’s queue, the socket will wake up the application process
that owns it (if necessary). That process may then make or return from a read system call
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Figure 6.1: Receiving messages.
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that copies the data from the packet in the queue into its own buffer. (The process may
also do nothing for the time being if it was not waiting for the packet, and get the data off
the queue when it needs it.)

6.2 Receiving Walk-Through

6.2.1 Reading from a Socket (Part I)

e Try to read data from a socket (application)

e Fill in message header with location of buffer (socket)

Check for basic errors - is the socket bound to a port? can the socket accept
messages? is there something wrong with the socket?

Pass the message header with to the appropriate transport protocol (INET socket)

Sleep until there is enough data to read from the socket (TCP/UDP)

6.2.2 Receiving a Packet
e Wake up the receiving device (interrupt)
e Test the medium (device)

Receive the link header

Allocate space for the packet

Tell the bus to put the packet into the buffer

Put the packet on the backlog queue

Set the flag to run the network bottom half when possible

Return control to the current process

6.2.3 Running the Network “Bottom Half”

e Run the network bottom half (scheduler)
e Send any packets that are waiting to prevent interrupts (bottom half)

e Loop through all packets in the backlog queue and pass the packet up to its Internet
reception protocol - IP
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e Flush the sending queue again

e Exit the bottom half

6.2.4 Unwrapping a Packet in IP

e Check packet for errors - too short? too long? invalid version? checksum error?
e Defragment the packet if necessary
e Get the route for the packet (could be for this host or could need to be forwarded)

e Send the packet to its destination handling routine (TCP or UDP reception, or
possibly retransmission to another host)

6.2.5 Accepting a Packet in UDP

e Check UDP header for errors
e Match destination to socket

e Send an error message back if there is no such socket

Put packet into appropriate socket receive queue

Wake up any processes waiting for data from that socket

6.2.6 Accepting a Packet in TCP

e Check sequence and flags; store packet in correct space if possible

If already received, send immediate ACK and drop packet

Determine which socket packet belongs to

Put packet into appropriate socket receive queue

Wake up and processes waiting for data from that socket

6.2.7 Reading from a Socket (Part II)

e Wake up when data is ready (socket)
e (Call transport layer receive function
e Move data from receive queue to user buffer (TCP/UDP)

e Return data and control to application (socket)
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6.3 Linux Functions

The following is an alphabetic list of the Linux kernel functions that are most important to
receiving traffic, where they are in the source code, and what they do. To follow functions
calls from the network up, start with DEVICE rx (). To follow functions calls from the
application down, start with sock_read().

>>> DEVICE_rx() - device dependent, drivers/net/DEVICE.c
(gets control from interrupt)
performs status checks to make sure it should be receiving
calls dev_alloc_skb() to reserve space for packet
gets packet off of system bus
calls eth_type_trans() to determine protocol type
calls netif_rx()
updates card status
(returns from interrupt)

inet_recvmsg() - net/ipv4/af_inet.c (764)
extracts pointer to socket sock
checks socket to make sure it is accepting
verifies protocol pointer
returns sk->prot[tcp/udp]l->recvmsg()

ip_rcv() - net/ipv4/ip_input.c (395)
examines packet for errors:
invalid length (too short or too long)
incorrect version (mot 4)
invalid checksum
calls __skb_trim() to remove padding
defrags packet if necessary
calls ip_route_input() to route packet
examines and handle IP options

returns skb->dst->input() [= tcp_rcv,udp_rcv()]

net_bh() - net/core/dev.c (835)
(run by scheduler)
if there are packets waiting to go out, calls qdisc_run_queues()
(see sending section)

while the backlog queue is not empty
let other bottom halves run
call skb_dequeue() to get next packet
if the packet is for someone else (FASTROUTED) put onto send queue
loop through protocol lists (taps and main) to match protocol type
call pt_prev—>func() [= ip_rcv()] to pass packet to appropriate
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protocol
call gdisc_run_queues() to flush output (if necessary)

netif_rx() - net/core/dev.c (757)
puts time in skb->stamp
if backlog queue is too full, drops packet
else
calls skb_queue_tail() to put packet into backlog queue
marks bottom half for later execution

sock_def_readable() - net/core/sock.c (989)
calls wake_up_interruptible() to put waiting process on run queue
calls sock_wake_async() to send SIGIO to socket process

sock_queue_rcv_skb() - include/net/sock.h (857)
calls skb_queue_tail() to put packet in socket receive queue
calls sk->data_ready() [= sock_def_readable()]

>>> sock_read() - net/socket.c (366)
sets up message headers
returns sock_recvmsg() with result of read

sock_recvmsg() - net/socket.c (338)
reads socket management packet (scm) or packet by
calling sock->ops[inet]->recvmsg()

tcp_data() - net/ipv4/tcp_input.c (1507)
shrinks receive queue if necessary
calls tcp_data_queue() to queue packet
calls sk->data_ready() to wake socket

tcp_data_queue() - net/ipv4/tcp_input.c (1394)
if packet is out of sequence:
if old, discards immediately
else calculates appropriate storage location
calls __skb_queue_tail() to put packet in socket receive queue
updates connection state

tcp_rcv_established() - net/ipv4/tcp_input.c (1795)
if fast path
checks all flags and header info
sends ACK
calls _skb_queue_tail() to put packet in socket receive queue
else (slow path)
if out of sequence, sends ACK and drops packet
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check for FIN, SYN, RST, ACK
calls tcp_data() to queue packet
sends ACK

tcp_recvmsg() - net/ipvé4/tcp.c (1149)
checks for errors
wait until there is at least one packet available
cleans up socket if connection closed
calls memcpy_toiovec() to copy payload from the socket buffer into
the user space
calls cleanup_rbuf() to release memory and send ACK if necessary
calls remove_wait_queue() to wake process (if necessary)

udp_queue_rcv_skb() - net/ipv4/udp.c (963)
calls sock_queue_rcv_skb()
updates UDP status (frees skb if queue failed)

udp_rcv() - net/ipv4/udp.c (1062)
gets UDP header, trims packet, verifies checksum (if required)
checks multicast
calls udp_v4_lookup() to match packet to socket
if no socket found, send ICMP message back, free skb, and stop
calls udp_deliver() [= udp_queue_rcv_skb()]

udp_recvmsg() - net/ipv4/udp.c (794)
calls skb_recv_datagram() to get packet from queue
calls skb_copy_datagram_iovec() to move the payload from the socket buffer
into the user space
updates the socket timestamp
fills in the source information in the message header
frees the packet memory
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Chapter 7

IP Forwarding

This chapter presents the pure routing side (by IP forwarding) of message traffic. It
provides an overview of the process, examines the layers packets travel through, details the
actions of each layer, and summarizes the implementation code within the kernel.

7.1 Overview

See Figure 7.1 for an abstract diagram of the the forwarding process. (It is essentially a
combination of the receiving and sending processes.)

A forwarded packet arrives with an interrupt when the system notifies the device that a
message is ready. The device allocates storage space and tells the bus to put the message
into that space. It then passes the packet to the link layer, which puts it on the backlog
queue, marks the network flag for the next “bottom-half” run, and returns control to the
current, process.

When the process scheduler next runs, it sees that there are networking tasks to do and
runs the network “bottom-half”. This function pops packets off of the backlog queue,
matches them to IP, and passes them to the receive function. The IP layer examines the
packet for errors and routes it; the packet will go up to the transport layer (such as TCP or
UDP if it is for this host) or sideways to the IP forwarding function. Within the forwarding
function, IP checks the packet and sends an ICMP message back to the sender if anything
is wrong. It then copies the packet into a new buffer and fragments it if necessary.

Finally the IP layer passes the packet to the link layer function, which moves the packet
onto the sending device’s xmit queue and makes sure the device knows that it has traffic to
send. Finally, the device (such as a network card) tells the bus to send the packet.
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7.2 IP Forward Walk-Through

7.2.1 Receiving a Packet

e Wake up the receiving device (interrupt)

e Test the medium (device)

Receive the link header

Allocate space for the packet

Tell the bus to put the packet into the buffer

Put the packet on the backlog queue

Set the flag to run the network bottom half when possible

Return control to the current process

7.2.2 Running the Network “Bottom Half”

e Run the network bottom half (scheduler)

Send any packets that are waiting to prevent interrupts (net_bh)

Loop through all packets in the backlog queue and pass the packet up to its Internet
reception protocol - IP

Flush the sending queue again

Exit the bottom half

7.2.3 Examining a Packet in IP
e Check packet for errors - too short? too long? invalid version? checksum error?
e Defragment the packet if necessary
e Get the route for the packet (could be for this host or could need to be forwarded)

e Send the packet to its destination handling routine (retransmission to another host in
this case)
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7.2.4 Forwarding a Packet in IP

e Check TTL field (and decrement it)

Check packet for improper (undesired) routing

Send ICMP back to sender if there are any problems

Copy packet into new buffer and free old one

Set any IP options

Fragment packet if it is too big for new destination

Send the packet to the destination route’s device output function

7.2.5 Transmitting a Packet

e Put the packet on the device output queue

Wake up the device

Wait for the scheduler to run the device driver

Test the medium (device)

Send the link header

Tell the bus to transmit the packet over the medium

7.3 Linux Functions

The following is an alphabetic list of the Linux kernel functions that are most important to
IP forwarding, where they are in the source code, and what they do. To follow the
functions calls, start with DEVICE _rx().

dev_queue_xmit() - net/core/dev.c (579)
calls start_bh_atomic()
if device has a queue
calls enqueue() to add packet to queue
calls qdisc_wakeup() [= qdisc_restart()] to wake device
else calls hard_start_xmit()
calls end_bh_atomic()

DEVICE->hard_start_xmit() - device dependent, drivers/net/DEVICE.c
tests to see if medium is open
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sends header
tells bus to send packet
updates status

>>> DEVICE_rx() - device dependent, drivers/net/DEVICE.c
(gets control from interrupt)
performs status checks to make sure it should be receiving
calls dev_alloc_skb() to reserve space for packet
gets packet off of system bus
calls eth_type_trans() to determine protocol type
calls netif_rx()
updates card status
(returns from interrupt)

ip_finish_output() - include/net/ip.h (140)
sets sending device to output device for given route
calls output function for destination [= dev_queue_xmit()]

ip_forward() - net/ipv4/ip_forward.c (72)
checks for router alert
if packet is not meant for any host, drops it
if TTL has expired, drops packet and sends ICMP message back
if strict route cannot be followed, drops packet and sends ICMP
message back to sender
if necessary, sends ICMP message telling sender packet is redirected
copies and releases old packet
decrements TTL
if there are options, calls ip_forward_options() to set them
calls ip_send()

ip_rcv() - net/ipv4/ip_input.c (395)
examines packet for errors:
invalid length (too short or too long)
incorrect version (not 4)
invalid checksum
calls __skb_trim() to remove padding
defrags packet if necessary
calls ip_route_input() to route packet
examines and handle IP options
returns skb->dst->input() [= ip_forward()]

ip_route_input() - net/ipv4/route.c (1366)
calls rt_hash_code() to get index for routing table
loops through routing table (starting at hash) to find match for packet
if it finds match:
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updates stats for route (time and usage)
sets packet destination to routing table entry
returns success
else
checks for multicasting addresses
returns result of ip_route_input_slow() (attempted routing)

ip_route_output_slow() - net/ipv4/route.c (1421)
if source address is known, looks up output device
if destination address is unknown, set up loopback
calls fib_lookup() to find route
allocates memory new routing table entry
initializes table entry with source, destination, TOS, output device,
flags
calls rt_set_nexthop() to find next destination
returns rt_intern_hash(), which installs route in routing table

ip_send() - include/mnet/ip.h (162)
calls ip_fragment() if packet is too big for device
calls ip_finish_output()

net_bh() - net/core/dev.c (835)
(run by scheduler)
if there are packets waiting to go out, calls qdisc_run_queues()
(see sending section)

while the backlog queue is not empty
let other bottom halves run
call skb_dequeue() to get next packet
if the packet is for someone else (FASTROUTED) put onto send queue
loop through protocol lists (taps and main) to match protocol type
call pt_prev->func() [= ip_rcv()] to pass packet to appropriate

protocol
call gdisc_run_queues() to flush output (if necessary)

netif_rx() - net/core/dev.c (757)
puts time in skb->stamp
if backlog queue is too full, drops packet
else
calls skb_queue_tail() to put packet into backlog queue
marks bottom half for later execution

qdisc_restart() - net/sched/sch_generic.c (50)
pops packet off queue
calls dev->hard_start_xmit()
updates status
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if there was an error, requeues packet

rt_intern_hash() - net/ipv4/route.c (526)
puts new route in routing table
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Chapter 8

Basic Internet Protocol Routing

This chapter presents the basics of IP Routing. It provides an overview of how routing
works, examines how routing tables are established and updated, and summarizes the
implementation code within the kernel.

8.1 Overview

Linux maintains three sets of routing data - one for computers that are directly connected
to the host (via a LAN, for example) and two for computers that are only indirectly
connected (via IP networking). Examine Figure 8.1 to see how entries for a computer in
the general example might look.

The neighbor table contains address information for computers that are physically
connected to the host (hence the name “neighbor”). It includes information on which
device connects to which neighbor and what protocols to use in exchanging data. Linux
uses the Address Resolution Protocol (ARP) to maintain and update this table; it is
dynamic in that entries are added when needed but eventually disappear if not used again
within a certain time. (However, administrators can set up entries to be permanent if
doing so makes sense.)

Linux uses two complex sets of routing tables to maintain IP addresses: an all-purpose
Forwarding Information Base (FIB) with directions to every possible address, and a smaller
(and faster) routing cache with data on frequently used routes. When an IP packet needs
to go to a distant host, the IP layer first checks the routing cache for an entry with the
appropriate source, destination, and type of service. If there is such an entry, IP uses it. If
not, IP requests the routing information from the more complete (but slower) FIB, builds a
new cache entry with that data, and then uses the new entry. While the FIB entries are
semi-permanent, (they usually change only when routers come up or go down) the cache
entries remain only until they become obsolete (they are unused for a “long” period).
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Network Structure:

chrysler
172.16.0.254
u.edu network jeep
network 172.16.0.0 172.16.0.1
netmask 255.255.0.0 ‘
dodge eagle plymouth
172.16.0.7 172.16.0.34 172.16.0.128
ethl
viper
172.16.1.1 cs.u.edu subnet
etho network 172.16.1.0
‘ netmask 255.255.255.0
stealth neon ram intrepid
172.16.1.4 172.16.1.5 172.16.1.6 172.16.1.16
dodgel/viper Routing Tables:
Neighbor Table: FIB Table: Routing Cache:
(host (zone (address/protocol/device)
device/protocol) address/device)

stealth (MAC address)
ethO/ethernet

neon (MAC address)
ethO/ethernet

chrysler (MAC address)
ethl/ethernet

(has not exchanged traffic
with other hosts - like
ram - recently or they
would also be in this table)

255.255.255.255
host / eth0 (itself)
host / eth1 (itself)

255.255.0.0
172.16.0.0 / eth1

255.255.255.0
172.16.1.0 / ethO

255.0.0.0 (loopback)
127.0.0.0/lo

0.0.0.0 (default router)
0/ethl

172.16.1.4/IP/eth0
172.16.1.5/IP/eth0
172.16.0.1/IP/ethl
207.25.71.20/IP/eth1
204.71.200.245/1P/eth1

(has exchanged traffic with
with stealth and neon and
sent traffic through jeep/
chrysler to the Internet)

Figure 8.1: General routing table example.
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Neighbor Table Parameters

(struct neigh_table) (struct neigh_parms)
Neighbors
(struct neighbour)
(struct Pneigh
neigh_table) (struct pneigh_entry)
m
2
(struct @ g
neigh_table) -E %
G
S

Figure 8.2: Neighbor Table data structure relationships.

8.2 Routing Tables

Note: within these tables, there are references to variables of types such as u32 (host byte
order) and __u32 (network byte order). On the Intel architecture they are both equivalent
to unsigned ints and in point of fact they are translated (using the ntohl function)

anyway; the type merely gives an indication of the order in which the value it contains is

stored.

8.2.1 The Neighbor Table

The Neighbor Table (whose structure is shown in Figure 8.2) contains information about
computers that are physically linked with the host computer. (Note that the source code
uses the European spelling, “neighbour”.) Entries are not (usually) persistent; this table
may contain no entries (if the computer has not passed any network traffic recently) or
may contain as many entries as there are computers physically connected to its network (if
it has communicated with all of them recently). Entries in the table are actually other
table structures which contain addressing, device, protocol, and statistical information.

struct neigh table *neigh_tables - this global variable is a pointer to a list of neighbor
tables; each table contains a set of general functions and data and a hash table of specific
information about a set of neighbors. This is a very detailed, low level table containing
specific information such as the approximate transit time for messages, queue sizes, device
pointers, and pointers to device functions.
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Neighbor Table (struct neigh table) Structure - this structure (a list element) contains
common neighbor information and table of neighbor data and pneigh data. All computers
connected through a single type of connection (such as a single Ethernet card) will be in
the same table.

e struct neigh table *next - pointer to the next table in the list.

e struct neigh parms parms - structure containing message travel time, queue
length, and statistical information; this is actually the head of a list.

e struct neigh parms *parms_list - pointer to a list of information structures.

e struct neighbour *hash buckets[] - hash table of neighbors associated with this
table; there are NEIGH HASHMASK+1 (32) buckets.

e struct pneigh entry *phash buckets[] - hash table of structures containing
device pointers and keys; there are PNEIGH HASHMASK+1 (16) buckets.

e Other fields include timer information, function pointers, locks, and statistics.

Neighbor Data (struct neighbour) Structure - these structures contain the specific
information about each neighbor.

e struct device *dev - pointer to the device that is connected to this neighbor.

e _u8 nud state - status flags; values can be incomplete, reachable, stale, etc.; also
contains state information for permanence and ARP use.

e struct hh_cache *hh - pointer to cached hardware header for transmissions to this
neighbor.

e struct sk buff head arp_queue - pointer to ARP packets for this neighbor.

e Other fields include list pointers, function (table) pointers, and statistical
information.

8.2.2 The Forwarding Information Base

The Forwarding Information Base (FIB) is the most important routing structure in the
kernel; it is a complex structure that contains the routing information needed to reach any
valid IP address by its network mask. Essentially it is a large table with general address
information at the top and very specific information at the bottom. The IP layer enters the
table with the destination address of a packet and compares it to the most specific netmask
to see if they match. If they do not, IP goes on to the next most general netmask and
again compares the two. When it finally finds a match, IP copies the “directions” to the
distant host into the routing cache and sends the packet on its way. See Figures 8.3 and 8.4
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Netmask Table Network Zones Network Information

one entry for each one zone for each routing instructions for
potential netmask known subnet mask each known network
0.0.0.0
0000 default node
8000 zone info
€000
E000 (empty) split into specific
10.0.0.0 ; ;
F000 node network information
=
zone info (addresses, TOS, etc.)
F800 and protocols
: (empty) (FOO00)
FEIOO Pty 172.16.0.0 (IP, ATM, etc.)
node
FFOO - info
FF80 \,.
. 172.29.0.0
: (empty) zone node
FFFF (FF00) info

Figure 8.3: Forwarding Information Base (FIB) conceptual organization.

for the organization and data structures used in the FIB - note that Figure 8.3 shows some
different FIB capabilities, like two sets of network information for a single zone, and so
does not follow the general example.)

struct fib_table *local_table, *main_table - these global variables are the access
points to the FIB tables; they point to table structures that point to hash tables that point
to zones. The contents of the main table variable are in /proc/net/route.

FIB Table fib_table Structure - include/net/ip_fib.h - these structures contain function
jump tables and each points to a hash table containing zone information. There are usually
only one or two of these.

e int (*tb_functions) () - pointers to table functions (lookup, delete, insert, etc.) that
are set during initialization to fn_hash_function().

e unsigned char tb_datal0] - pointer to the associated FIB hash table (despite its
declaration as a character array).

e unsigned char tb_id - table identifier; 255 for local_table, 254 for main_table.

e unsigned tb_stamp

Netmask Table fn_hash Structure - net/ipv4/fib_hash.c - these structures contain pointers
to the individual zones, organized by netmask. (Each zone corresponds to a uniquely
specific network mask.) There is one of these for each FIB table (unless two tables point to
the same hash table).

e struct fn zone *fn zones[33] - pointers to zone entries (one zone for each bit in

the mask; fn_zone[0] points to the zone for netmask 0x0000, fn_zone[1] points to
the zone for 0x8000, and fn_zone[32] points to the zone for OxFFFF.
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e struct fn zone *fn zone list - pointer to first (most specific) non-empty zone in
the list; if there is an entry for netmask OxFFFF it will point to that zone, otherwise
it may point to zone OxFFF0 or 0xFF00 or 0xF000 etc.

Network Zone fn_zone Structure - net/ipv4/fib_hash.c - these structures contain some
hashing information and pointers to hash tables of nodes. There is one of these for each
known netmask.

e struct fn zone *fz next - pointer to the next non-empty zone in the hash
structure (the next most general netmask; e.g., fn_hash->fn zone [28]->fz next
might point to fn_hash->fn zone[27]).

e struct fib_node **fz_hash - pointer to a hash table of nodes for this zone.
e int fz nent - the number of entries (nodes) in this zone.

e int fx_divisor - the number of buckets in the hash table associated with this zone;
there are 16 buckets in the table for most zones (except the first zone - 0000 - the
loopback device).

e u32 fz hashmask - a mask for entering the hash table of nodes; 15 (0x0F) for most
zones, 0 for zone 0).

e int fz order - the index of this zone in the parent fn hash structure (0 to 32).

e u32 fz_mask - the zone netmask defined as ~((1<<(32-fz_order))-1); for example,
the first (zero) element is 1 shifted left 32 minus 0 times (0x10000), minus 1
(0xFFFF), and complemented (0x0000). The second element has a netmask of
0x8000, the next 0xC000, the next 0xE000, 0xF000, 0xF800, and so on to the last
(32d) element whose mask is OxFFFF.

Network Node Information fib_node Structure - net/ipv4/fib_hash.c - these structures
contain the information unique to each set of addresses and a pointer to information about
common features (such as device and protocols); there is one for each known network
(unique source/destination/TOS combination).

e struct fib_node *fn_next - pointer to the next node.

e struct fib_info *fn_info - pointer to more information about this node (that is
shared by many nodes).

e fn key_t fn key - hash table key - the least significant 8 bits of the destination
address (or 0 for the loopback device).

e Other fields include specific information about this node (like fn_tos and fn_state).
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Figure 8.4: Forwarding Information Base (FIB) data relationships.

Network Protocol Information (fib_info) Structure - include/net/ip_fib.h - these
structures contain protocol and hardware information that are specific to an interface and
therefore common to many potential zones; several networks may be addressable through
the same interface (like the one that leads to the rest of the Internet). There is one of these
for each interface.

e fib protocol - index to a network protocol (e.g., IP) used for this route.

e struct fib nh fib nh[0] - contains a pointer to the device used for sending or
receiving traffic for this route.

e Other fields include list pointers and statistical and reference data (like fib_refcnt
and fib_flags.

FIB Traversal Example:

. ip_route output_slow() (called because the route is not in the routing cache) sets
up an rt_key structure with a source address of 172.16.0.7, a destination address of
172.16.0.34, and a TOS of 2.

. ip_route_output_slow() calls fib_lookup() and passes it the key to search for.

. £ib_lookup() calls local table->tb_lookup() (which is a reference to the
fn hash lookup function) to make the local table find the key.

. fn hash lookup() searches the local table’s hash table, starting in the most specific
zone - 24 (netmask 255.255.255.0 dotted decimal) (pointed to by the fn_zone list
variable).

. fz_key() builds a test key by ANDing the destination address with the zone
netmask, resulting in a key value 172.16.0.0.
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6. fz_chain() performs the hash function (see fn_ hash()) and ANDs this value with
the zone’s fz_hashmask (15) to get an index (6) into the zone’s hash table of nodes.
Unfortunately, this node is empty; there are no possible matches in this zone.

7. fn_hash_lookup() moves to the next non-empty zone - 16 (netmask 255.255.0.0
dotted decimal) (pointed to by the current zone’s fz_next variable).

8. fz_key() builds a new test key by ANDing the destination address with this zone’s
netmask, resulting in a key value of 172.16.0.0.

9. fz_chain() performs the hash function and ANDs this value with the zone’s
fz_hashmask (15) to get an index (10) into the zone’s hash table of nodes. There is a
node in that slot.

10. fn_hash lookup() compares its search key to the node’s key. They do not match, but
the search key value is less than that of the node key, so it moves on to the next node.

11. fn hash lookup() compares its search key to the new node’s key. These do match,
so it does some error checking and tests for an exact match with the node and its
associated info variable.

12. Since everything matches, fn_hash lookup() fills in a fib_result structure with all
the information about this route. (Otherwise it would continue checking more nodes
and more zones until it finds a match or fails completely.)

13. ip_route_output_slow() takes the fib_result structure and, assuming everything is
in order, creates a new routing cache entry from it.

8.2.3 The Routing Cache

The routing cache is the fastest method Linux has to find a route; it keeps every route that
is currently in use or has been used recently in a hash table. When IP needs a route, it
goes to the appropriate hash bucket and searches the chain of cached routes until finds a
match, then sends the packet along that path. (See Section 8.2.2 for what happens when
the route is not yet in the cache.) Routes are chained in order, most frequently used first,
and have timers and counters that remove them from the table when they are no longer in
use. See Figure 8.5 for an abstract overview and Figures 8.6 and 8.7 for detailed diagrams
of the data structures.

struct rtable *rt_hash table[RT_HASH DIVISOR] - this global variable contains 256
buckets of (pointers to) chains of routing cache (rtable) entries; the hash function
combines the source address, destination address, and TOS to get an entry point to the
table (between 0 and 255). The contents of this table are listed in /proc/net/rt_cache.

Routing Table Entry (rtable) Structure - include/net/route.h - these structures contain
the destination cache entries and identification information specific to each route.
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Figure 8.5: Routing Cache conceptual organization.

e union < struct dst_entry dst; struct rtablex rt_next) > u - thisis an
entry in the table; the union structure allows quick access to the next entry in the
table by overusing the rtable’s next field to point to the next cache entry if required.

e __u32 rt_dst - the destination address.
e __u32 rt_src - the source address.
e rt_int iif - the input interface.

e _u32 rt _gateway - the address of the neighbor to route through to get to a
destination.

e struct rt key key - a structure containing the cache lookup key (with srec, dst, iif,
oif, tos, and scope fields)

e Other fields contain flags, type, and other miscellaneous information.

Destination Cache (dst_entry) Structure - include/net/dst.h - these structures contain
pointers to specific input and output functions and data for a route.

e struct device *dev - the input/output device for this route.
e unsigned pmtu - the maximum packet size for this route.
e struct neighbor *neighbor - a pointer to the neighbor (next link) for this route.

e struct hh_cache *hh - a pointer to the hardware header cache; since this is the same
for every outgoing packet on a physical link, it is kept for quick access and reuse.
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e int (*input) (struct sk_buffx) - a pointer to the input function for this route
(typically tcp_recv()).

e int (*output) (struct sk _buffx*) - a pointer to the output function for this route
(typically dev_queue_xmit()).

e struct dst_ops *ops - a pointer to a structure containing the family, protocol, and
check, reroute, and destroy functions for this route.

e Other fields hold statistical and state information and links to other routing table

entries.

Neighbor Link (neighbor) Structure - include/net/neighbor.h - these structures, one for
each host that is exactly one hop away, contain pointers to their access functions and
information.

e struct device *dev - a pointer to device that is physically connected to this
neighbor.

e struct hh cache *hh - a pointer to the hardware header that always precedes traffic
sent to this neighbor.

e int (*output) (struct sk _buff*) - a pointer to the output function for this
neighbor (typically dev_queue xmit()?).

e struct sk _buff head arp_queue - the first element in the ARP queue for traffic
concerning this neighbor - incoming or outgoing?

e struct neigh ops *ops - a pointer to a structure that containing family data and
and output functions for this link.

e Other fields hold statistical and state information and references to other neighbors.
Routing Cache Traversal Example:

1. ip_route_output () (called to find a route) calls rt_hash _code () with a source
address of 172.16.1.1, a destination address of 172.16.1.6, and a TOS of 2.

2. rt_hash_code() performs a hash function on the source, destination, and TOS and
AND:s the result with 255 to get an entry into the hash table (5).

3. ip-route_output () enters the hash table at index 5. There is an entry there, but the
destination addresses do not match.

4. ip_route_output () moves to the next entry (pointed to by the u.rt next field of the
last entry). This one matches in every case - destination address, source address, iif
of 0, matching oif, and acceptable TOS.
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Figure 8.6: Routing Cache data structure relationships.
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5. ip_route_output () updates the statistics in the newfound dst_cache structure of
the table entry, sets a pointer for the calling function to refer to the route, and
returns a 0 indicating success.

8.2.4 Updating Routing Information

Linux only updates routing information when necessary, but the tables change in different
manners. The routing cache is the most volatile, while the FIB usually does not change at
all.

The neighbor table changes as network traffic is exchanged. If a host needs to send
something to an address that is on the local subnet but not already in the neighbor table,
it simply broadcasts an ARP request and adds a new entry in the neighbor table when it
gets a reply. Periodically entries time out and disappear; this cycle continues indefinitely
(unless a route has been specifically marked as ARP permanent). The kernel handles most
changes automatically.

The FIB on most hosts and even routers remains static; it is filled in during initialization
with every possible zone to route through all connected routers and never changes unless
one of the routers goes down. (See Chapter 9 for details on IP routing daemons). Changes
have to come through external ioct1() calls to add or delete zones.

The routing cache changes frequently depending on message traffic. If a host needs to send
packets to a remote address, it looks up the address in the routing cache (and FIB if
necessary) and sends the packet off through the appropriate router. On a host connected to
a LAN with one router to the Internet, every entry will point to either a neighbor or the
router, but there may be many entries that point to the router (one for each distant
address). The entries are created as connections are made and time out quickly when
traffic to that address stops flowing. Everything is done with IP level calls to create routes
and kernel timers to delete them.

8.3 Linux Functions

The following is an alphabetic list of the Linux kernel functions that are most important to
routing, where they are in the source code, and what they do.

arp_rcv() - net/ipv4/arp.c (542)
checks for errors (non-ARP device, no device, packet not for host,
device type does not match, etc.)
check for operation - only understands REPLY and REQUEST
extracts data from packet
check for bad requests - loopback or multicast addresses
checks for duplicate address detection packet (sends reply if necessary)
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if the message is a request and ip_route_input() is true:
if the packet is a local one:
calls neigh_event_ns() to look up and update neighbor that sent packet
checks for hidden device (does not reply if hidden)
sends reply with the device address
otherwise:
calls neigh_event_ns() to look up and update neighbor that sent packet
calls neigh_release()
if necessary, calls arp_send() with the address
otherwise calls pneigh_enqueue() and returns 0
if the message is a reply:
calls __neigh_lookup()
checks to see if multiple ARP replies have come in; keeps only the
fastest (first) one
calls neigh_update() to update ARP entry
calls neigh_release()
frees the skbuffer and returns 0

arp_send() - net/ipvé4/arp.c (434)
checks to make sure device supports ARP
allocates an skbuffer
fills in buffer header information
fills in the ARP information
calls dev_queue_xmit() with the finished packet

arp_req_get() - net/ipvé4/arp.c (848)
calls __neigh_lookup() to find entry for given address

copies data from neighbor entry to arpreq entry
returns O if found or ENXIO if address not in ARP table

fib_get_procinfo() - net/ipv4/fib_frontend.c (109)
prints header and results of main_table->fn_hash_get_info() for proc FS

fib_lookup() - include/mnet/ip_fib.h (153)
calls tb_lookup() [= fn_hash_lookup()] on local_table and main_table
if either omne has an entry, it fills in fib_result and returns 0
else returns unreachable error

fib_node_get_info() - net/ipv4/fib_semantics.c (971)
prints fib_node and fib_info contents for proc FS

fib_validate_source() - net/ipv4/fib_frontend.c (191)
tests incoming packet’s device and address
returns error code if something is wrong
returns 0 if packet seems legal
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fn_hash() - net/ipv4/fib_hash.c (108)
performs a hash function on a destination address:
u32 h = ntohl(daddr)>>(32 - fib_zone->fz_order);

h = (h>>20);
h ~= (h>>10);
h "= (h>>5);

h &= FZ_HASHMASK(fz); // FZ_HASHMASK is 15 for almost all zones

fn_hash_get_info() - net/ipv4/fib_hash.c (723)
loops through zones in a FIB table printing fib_node_get_info() for
proc FS

fn_hash_lookup() - net/ipv4/fib_hash.c (261)
loops through the zones in the given table
loops through the nodes in each zone (starting at the hash entry)
if the netmasks (node and destination) match

checks the TOS and node status
calls fib_semantic_match() to check packet type
fills in fib_result with success data and returns 0

returns 1 if nothing matched

fn_new_zone() - net/ipv4/fib_hash.c (220)

allocates memory (in kernel) for new zone

allocates space for 16 node buckets for zone (except first zone -
0.0.0.0 [loopback] - which only gets omne)

stores netmask (leftmost n bits on, where n is the position of the
zone in the table)

searches for more specific zone in parent table

inserts zone into zone list (most specific zone is head)

installs new zone into parent table

returns new zone

fz_chain() - net/ipv4/fib_hash.c (133)
calls fn_hash() to get a hash value
returns the fib_node in the fib_zone at the hash index

ip_dev_find() - net/ipv4/fib_frontend.c (147)
looks up and returns the device with a given address in the local table

ip_route_connect() - include/net/route.h (140)
calls ip_route_output() to get a destination address
returns if the call works or generates an error
otherwise clears the route pointer and try again
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ip_route_input() - net/ipv4/route.c (1366)
calculates hash value for address
runs through table (starting at hash) to find connection match
(source, destination, TO0S, and IIF/0IF)
if there is a match, updates stats and returns routing entry
else calls ip_route_input_slow()

ip_route_input_slow() - net/ipv4/route.c (1097)
creates a routing table cache key
checks for special addresses (like loopback, broadcast, or errors)
calls fib_lookup() to find route
allocates memory for new routing table entry
initializes table entry with source, destination, TOS, output device,
flags
calls fib_validate_source() to test packet source
printks message and returns error if source is bad
calls rt_set_nexthop() to find next destination (neighbor)
returns rt_intern_hash(), which installs route in routing table

ip_route_output() - net/ipv4/route.c (1664)
calculates hash value for address
runs through table (starting at hash) to find connection match
(source, destination, TOS, and IIF/0IF)
if there is a match, updates stats and returns routing entry
else calls ip_route_output_slow()

ip_route_output_slow() - net/ipv4/route.c (1421)
creates a routing table cache key

if source address is known, calls ip_dev_find to determine output device

if destination address is unknown, set up loopback

calls fib_lookup() to find route

allocates memory for new routing table entry

initializes table entry with source, destination, TOS, output device,
flags

calls rt_set_nexthop() to find next destination (neighbor)

returns rt_intern_hash(), which installs route in routing table

ip_rt_ioctl() - net/ipv4/fib_frontend.c (250)
switches on SIOCADDRT or SIOCDELRT (returns EINVAL otherwise)
verifies permission and copies argument to kernel space
converts copied argument to an rtentry structure
if deleting a route, calls fib_get_table() and table->delete()
else calls fib_new_table() and table->insert()
frees argument space and returns 0 for success
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neigh_event_ns() - net/core/neighbour.c (760)
calls __neigh_lookup() to find up address in neighbor table
calls neigh_update()
returns pointer to designated neighbor

neigh_update() - net/core/neighbour.c (668)
checks permissions to modify table
checks neighbor status if this is not a new entry
compares given address to cached one:
if null or device has no address, uses current address
if different, check override flag
calls neigh_sync() to verify neighbor is still up
updates neighbor contact time
if old entry was valid and new one does not change address, returns 0
if new address is different from old, replaces old with new
if new and old states match, returns O
calls neigh_connect() or neigh_suspect() to make/check connection
if old state was invalid:
goes through packets in ARP queue, calling the neighbor output()
function on each
purges the ARP queue
returns O

rt_cache_get_info() - net/ipv4/route.c (191)
prints header and all elements of rt_hash_table for proc FS

rt_hash_code() - net/ipv4/route.c (18)
uses source address, destination address, and type of service to
determine (and return) a hash value:
hash ((daddr&0xFOFOFO0F0)>>4) | ((daddr&0x0FOFOFQF)<<4) ;
hash = hash“saddr~tos;
hash = hash~ (hash>>16);
hash = (hash~(hash>>8)) & OxFF;

rt_intern_hash() - net/ipv4/route.c (526)
puts new route in routing table
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Chapter 9

Dynamic Routing with routed

This chapter presents dynamic routing as performed by a router (as opposed to an end
host computer). It provides an overview of how the routed program implements routing
protocols under Linux, examines how it modifies the kernel routing tables, and summarizes
the implementation code.

9.1 Overview

A normal host computer has very limited options for routing packets; a message is either
for itself or another computer, and if it is for another computer there are a very limited
number of options for sending it on. Usually such a host needs only to put a packet out on
a LAN for a “gateway” computer (router) to pick up and send on its way. Linux usually
does not maintain any metric (distance) information about routes, even though there are
variables for storing it in the FIB. For simple end-host routing, the only important
question is “can I get there from here”, not “which way is best?”

However, a router must make decisions on where to send traffic. There may be several
routes to a destination, and the router must select one (based on distance, measured in
hops or some other metric such as the nebulous quality of service). The Routing
Information Protocol (RIP) is a simple protocol that allows routing computers to track the
distance to various destinations and to share this information amongst themselves.

Using RIP, each node maintains a table that contains the distance from itself to other
networks and the route along which it will send packets to that destination. Periodically
the routers update each other; when shorter routes becomes apparent, the node updates its
table. Updates are simply RIP messages with the destination address and metric
components of this table. See Figure 9.1 for a diagram of an RIP routing table and an RIP
packet.
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Figure 9.1: Routing Information Protocol packet and table.
9.2 How routed Works

routed is a widely available program for implementing RIP via UDP messages on POSIX
computers. It is essentially a stand-alone program which uses ioct1() calls to get
information from and update routing tables on the host machine.

9.2.1 Data Structures

routed maintains two identical data tables - one for hosts and one for networks. Each is a
hash table with ROUTEHASHSIZ (32) buckets of chains of routing entries. The entries
contain the RIP information (but can also line up with a struct rtentry so that routed
can pass them to the kernel through ioct1() calls). Along with the basic destination,
router, and metric information the entries store flags, state, and timer information.

9.2.2 Initialization

When routed begins, it performs various initialization actions and calls ioct1() to get
interface information from the kernel. Next it sends out a RIP/UDP message requesting
routing information from all neighboring routers. Finally it enters an infinite loop in which
it waits for traffic or timers to make it do something.
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9.2.3 Normal Operations

When RIP messages arrive (via a UDP socket), routed parses them and either modifies its
table (for response messages) or sends information back to the requesting router (for
requests). Sending information is simply a matter of looking up a destination in its own
table, putting that information into a RIP packet, and sending it out through a UDP
socket. Updating its table may have no impact (if there is no change or the change makes
no difference) or it may result in a routing change. If the update reveals a shorter route to
a destination, routed will update its own table and then call ioct1() to update the
kernel’s routing tables (the FIB).

When the update timer expires, every TIMER_RATE seconds, routed goes through every
entry in both tables and updates their timers. Entries which are out of date are set to a
distance of infinity (HOPCNT_INFINITY) and entries which are too old are deleted (only from
the RIP table, not from the kernel’s FIB). Finally, it sends an update to its neighboring
routers. This update contains the new table information (response messages) for any
entries which have changed since the last update.

routed leaves the actual routing to the normal kernel routing mechanisms; all it does is
update the kernel’s tables based on information from other routers and pass on its own
routing information. The updates then change how the kernel routes packets, but routed
itself does not actually do any routing.

9.3 routed Functions

The following is an alphabetic list of the routed program functions that are most important
to routing, where they are in the source code, and what they do. The SOURCES directory
shown represents the directory that contains the source code for the given network file.

The routed source is available as a package separate from the kernel source (Red Hat Linux
uses the rpm package manager). The code below is from the netkit-routed-0.10 source code
package, 8 March 1997. This package is available from the
www.redhat.com/apps/download web page; specifically this came from
www.redhat.com/swt/src/netkit-routed-0.10.src.html. Once downloaded, root can install
the package with the following commands (starting from the directory with the package):

rpm -i netkit-routed-0.10.src.rpm
cd /usr/src/redhat/SOURCES
tar xzf netkit-routed-0.10.tar.gz

This creates a /usr/src/redhat/SOURCES /netkit-routed-0.10 directory and fills it with the
source code for the routed program. This process should be similar (but is undoubtably
not exactly the same) for other Linux distributions.
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ifinit() - SOURCES/routed/startup.c (88)

opens a UDP socket

calls ioctl(SIOCFIGCONF) to get interface configuration

loops through interfaces:
calls ioctl() to get flags, broadcast address, metric, and netmask
creates a new interface structure
copies info into interface structure
calls addrouteforif() to add routing entry for interface

sets supplier variable if necessary

closes socket

process() - SOURCES/routed/main.c (298)
starts a continuous loop:
receives a packet (waits)
verifies that packet is correct size
calls rip_input() to handle (RIP) packet

rip_input() - SOURCES/routed/input.c (60)
traces input if necessary
checks packet to make sure protocol and address are supported
checks for RIP version (cannot be 0)
switch based on packet content -
if packet is a request:
checks request for validity
if request is for all entries, calls supply()
else looks up requested address, builds and sends response packet
if packet is a trace on or off:
verifies request came from a valid port
if all is in order, sets trace to on or off
if packet is a response:
verifies response came from a router
updates timer for interface
loops through each entry in received packet:
parses route information
validates address family, host, and metric information
updates hop count (adds metric in message to hop count to router
that send message, subject to HOPCNT_INFINITY maximum)
calls rtlookup() to find address in routing table
if this seems to be a new route:
calls rtfind() to look for an equivalent route
if it really is new, calls rtadd() and returns
calls rtchange() to modify route if necessary (new route or
hopcount change)
updates route timers
if there were changes:
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sends an update if neccessary
updates general update timer information

>>> routed main() - SOURCES/routed/main.c (78)
opens routed log file
calls getservbyname() to get UDP router
sets up a UDP socket for RIP message traffic
runs through command line arguments to set flags
if not debugging, forks and runs program in new session (parent dies)
calls rtinit() to initialize data tables
calls ifinit() to fill in interface information
calls toall() to request info from all other routers
installs signal handlers for ALRM,HUP,TERM,INT,USR1,and USR2
starts a continuous loop:
if in need of update, sets up timer variables
calls select() to wait for traffic
if select() returns an error (other than EINTR), logs it
if select() times out (time for update)
calls toall() to broadcast update
resets timer variables
if there is traffic waiting on the socket, calls process()

rtadd() - SOURCES/routed/tables.c (138)
verifies address family is in proper range
calls family af_rtflags() function to set routing flags
determines hash value for appropriate table (host or net)
creates and fills in new rt_entry structure
calls insque() to add entry to table
calls rtioctl() to add entry to kernel table
if call fails:
if route should work, calls family af_format() to add destination
and gateway to kernel tables
if host is unreachable, removes and frees entry

rtchange() - SOURCES/routed/tables.c (207)
determines if change necessitates adding or deleting gateways
calls rtioctl() to add and/or delete routes

rtfind() - SOURCES/routed/tables.c (100)
determines hash value for host table
loops through table; returns entry if addresses are equal
determines hash value for net table
goes back to loop through table, this time returning entry if a call
to family af_netmatch() function returns true
returns null (0) if no match
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rtinit() - SOURCES/routed/tables.c (336)

loops through the net hash table, setting forward and back pointers
loops through the host hash table, setting forward and back pointers

rtioctl() - SOURCES/routed/tables.c (346)
fills in rtentry structure from parameters
outputs trace actions if necessary

calls ioct1(SIOCADDRT or SIOCDELRT) to update kernel table
returns result of ioctl() call (or -1 for erroneous parameter)

rtlookup() - SOURCES/routed/tables.c (65)
determines hash value for address
runs through host table looking for match
if unsuccessful at first, tries again with net table
returns pointer to entry or null (0)

sndmsg() - SOURCES/routed/output.c (77)
calls the appropriate family output function
traces the packet if necessary

supply() - SOURCES/routed/ouput.c (91)
creates an RIP response message
loops through the routing host table
loops through the routing entries
checks to see if routing host needs the entry
if so, puts routing info into packet and sends it
goes back and does it again with the routing net table

timer() - SOURCES/routed/timer.c (56)

updates timer variables

loops through the host table
updates timer information for each entry
deletes entry if it is too old
changes metric to infinity if it is getting old

goes back and does it again with net table

calls toall() if update is due

toall() - SOURCES/routed/output.c (55)
loops through interfaces:

sets destination address to broadcast or specific address
calls passed function [sndmsg() or supply()] with address
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Chapter 10

Editing Linux Source Code

10.1 The Linux Source Tree

Linux source code is usually in the /usr/src directory (if installed). There may be many
versions in different directory trees (such as linux-2.2.5 or linux-2.2.14). There should be
one soft link (linux) to the most current version of the code (i.e. linux — linux-2.2.14).

This is an overview of the Linux source directory structure (not all branches are shown:

/usr/src/linux/

e arch - architecture specific code, by processor

— 1386 - code for Intel processors (including 486 and Pentium lines)

*x boot - location of newly compiled kernels
e drivers - code for drivers of all sorts

— block - block device drivers (e.g., hard drives)
— cdrom - CD ROM device drivers
— net - network device drivers

— pci - PCI bus drivers
e fs- code for different file systems (EXT2, MS-DOS, etc.)
e include - header files used throughout the code

— asm — asm-i386 - processor dependent headers
— config - general configuration headers
— linux - common headers

— net - networking headers
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kernel - code for the kernel specific routines

lib - code for errors, strings, and printf

e mm - code for memory management

modaules - object files and references for the kernel to load as required

net - code for networking

core - protocol independent code

ipv4 - code specific to IPv4

packet - protocol independent packet code

— sched - code for scheduling network actions

10.2 Using EMACS Tags

The Linux source is obviously very large and spread throughout many files. A TAGS file
allows you to quickly maneuver to a specific file in search of a reference.

10.2.1 Referencing with TAGS

Inside a file, move the cursor to a keyword you would like to look up (e.g., “sock”). Press
“ESC” «” - EMACS will prompt for the tag to find (defaulting to the word your cursor is
on); hit “ENTER”. The first time you use it, you will have to specify which TAGS file to
use (e.g., /usr/src/TAGS). Next EMACS will automatically open the appropriate file (e.g.,
/usr/src/linux /include/linux/sock.h) in a new buffer and put the cursor on the definition
of that struct, #define, or function. If the definition it brings up is not the one you were
looking for, press “CTRL-U” “ESC” “.” to bring up alternate references.

These tags work even as you make changes to the source files, though they will run slower
as more and more changes are made. EMACS stores the tags in a file (defaulted to TAGS)
with each reference, filename, and line number. If the tag is not at the stored line number,
EMACS will search the file to find the new location.

10.2.2 Constructing TAGS files

If you need to start from scratch, follow the steps below.

The command to make a tags file is:

etags filename
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The command to append new information onto a tags file is:
etags -a filename

These put the new tags into the file TAGS in the current directory. Filenames are stored as
given, so absolute references will always refer to the same files while relative references
depend on the position of the TAGS file. (Read the man page for etags for more
information).

For example, to create a tags file for the ipv4 source files, enter:
etags /usr/src/linux/net/ipvé4/*.c

To add the header files, enter:
etags -a /usr/src/include/net/*.h

The TAGS file will now contain quick references to all the C source code and header
information in those directories.

10.3 Using vi tags

The vi editor also supports the use of tags files (and creates them with the gctags
command, which works almost exactly like the etags command shown above).

10.4 Rebuilding the Kernel

(See the Linux-kernel- HOWTO for more detailed instructions.)

This is a quick step-by-step guide to recompiling and installing a kernel from scratch.

1. Go to the top of the source directory (/usr/src/linux). If there is not already a
historical copy of a working .config file (such as the current one), MAKE ONE. Until
you have enough experience that you no longer need this guide, do not overwrite
anything until you have made sure there is a copy to which you can revert. (On the
other hand, once you have a stable kernel version, there is no reason to keep old ones
around. Even a development system should probably only have an original working
version, a last known stable version, and a current version.

2. Run make xconfig (make config and make menuconfig also work, but xconfig is by
far the user-friendliest). Configure the system as desired; there is help available for
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10.

11.

most options. The config file should default to the current settings, so you should
only have to change the things you want to add or take out. As a general rule, select
“Y” for essential or frequently used features (like the ext2 file system), “M” for
things that are sometimes useful (like sound drivers), and “N” for things that do not
apply (like amateur radio support). If in doubt, consult the help text or include
something as a module.

Run make dep to make sure the options you heve selected will compile properly. This
make take a few minutes as the computer checks all of the dependencies. If all goes
well, the make program will simply exit; if there is a problem, it will display error
messages and stop.

Run make clean to remove old object files IF you want to recompile everything.
This obviously will make the compilation process take longer.

Run make bzImage to build the new kernel. (make zImage and make boot also build
kernel images, but the bzlmage will compile into the most compact file. If you are
using one of these two methods for some reason, you may get a “kernel too big” error
when you run lilo - try again with a bzImage.) This will take quite some time,
depending on available memory.

Run make modules to build any modules (not included in the main kernel image).
Rename the old modules if necessary:
mv /lib/modules/2.2.xx /lib/modules/2.2.xx-0ld

(Note that you will not have to do this if you are compiling a completely new version;
the old ones will still be in /lib/modules/2.2.xx when you build version 2.2.yy.)

Run make modules_install to install the new modules. You must do this even if
you built a monolithic kernel (one with no modules). (Note that there may be a Red
Hat module-info text file or link in the boot directory; it is not terribly important
and this does not update it.)

Copy the new kernel to the /boot directory and change the kernel link (usually
vmlinuz):

cp arch/i386/boot/bzImage /boot/vmlinuz-2.2.xx
1n -sf /boot/vmlinuz-2.2.xx /boot/vmlinuz

Copy the new System.map file to the /boot directory and change the map link:

cp System.map /boot/System.map-2.2.xx
1n -sf /boot/System.map-2.2.xx /boot/System.map

Create a new initrd file if there are any SCSI devices on the computer:

/sbin/mkinitrd /boot/initrd-2.2.xx.img 2.2.xx
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12. Edit the file /etc/lilo.conf to install the new kernel; copy the block for the old kernel
(image=vmlinuz) and change the existing one to keep it as an option. For example,
rename the image to vmlinuz-2.2.xx-0ld and change the label to stable. This way
you can always reboot to the current (presumably stable) kernel if your changes cause
problems.

13. Run /sbin/1ilo to install the new kernel as a boot option.
14. Reboot the computer with the new kernel.

15. If the new kernel does not work properly, boot the old kernel and reconfigure the
system before trying again.

10.5 Patching the Kernel Source

Linux is a constantly changing operating system; updates can be released every few
months. There are two ways to install a new kernel version: downloading the new source in
its entirety or downloading patches and applying them.

Downloading the entire source may be preferable to guarantee everything works properly.
To do so, download the latest kernel source and install (untar) it. Note that this will
(probably) be a complete distribution, not a machine-specific one, and will contain a lot of
extra code. Much of this can be deleted, but the configuration Makefiles rely on some for
information. If space is an issue, delete the *.c and *.h files in the non-i386 arch/ and
include/asm-* directories, but tread lightly.

Downloading patches may be quicker to do, but is somewhat harder. Because of
distribution variations, changes you have made, or other modifications the patches may not
quite work properly. You must apply patch files in order (to go from 2.2.12 to 2.2.14, first
apply patch 2.2.13 then apply 2.2.14). Nevertheless, patches may be preferable because
they work on an existing directory tree.

Once you have downloaded a patch (and unzipped it, if necessary), simply put it in the
directory above linux (e.g., /usr/src/) and run the patch program to install it:

patch -NpO --verbose -r rejfile < patch-2.2.xx (where zz is the patch
version)

The -N option ignores patches that are already applied, and the -p0 assumes the patch
wants to apply itself to a source in a linux directory. The -r rejfile option puts all the
patch rejects into one file (rejfile) - which may or may not be what you want to do. If you
have not kept the entire source distribution, you will have to skip many changes (for
different processor architectures) by simply hitting “ENTER” at the “patch which file” and
“ignore patch” prompts. Once you are comfortable with the process, run it without the
--verbose and -r rejfile options.
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Once you have a new kernel version, follow the instructions on rebuilding the kernel to
actually start using it. You probably will not have to change any of the configurations
options, but you will almost definitely want to run make clean to remove any old object
files.
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Chapter 11

Linux Modules

This chapter presents the Linux module system. It provides an overview of how modules
work, describes how to install and remove them, and presents an example program.

11.1 Overview

Linux kernels more recent than 2.0 can be (and usually) are modularized. There is a
portion of the kernel that remains in memory constantly (the most frequently used
processes, such as the scheduler) but other processes are only loaded when needed. An
MS-DOS file system for reading disks, for example, might be loaded only on mounting such
a disk and then unloaded when no longer needed. This keeps the space the kernel requires
at any one time small while allowing it to do more and more. It is still possible to put
everything into one “monolithic” kernel that will not need modules, but that is usually done
only for special purpose machines (where all the required processes are known in advance).

Another advantage of modules is that the kernel can load and unload them dynamically
(and automatically with the kerneld daemon). This means that a (super) user can load a
module, test it, unload it, and debug it repeatedly without having to reboot the computer.
This document assumes that the user has superuser access (you must be root to install
and remove modules) and the kernel is configured for modules. (With a monolithic kernel,
it is possible to set configuration options not to even allow modules.)

11.2 Writing, Installing, and Removing Modules

11.2.1 Writing Modules

Modules are just like any other programs except that they run in kernel space. As such,
they must define MODULE and include module.h and any other kernel header files that define
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functions or variables they use. Modules can be quite simple (as the example shows) but
they can also be quite complex, such as device drivers and entire file systems.

This is the general module format:

##define MODULE
#include <linux/module.h>

/* ... other required header files ... */
/*
* ..., module declarations and functions
*/

int init_module() {
/* code kernel will call when installing module */

}

void cleanup_module() {
/* code kernel will call when removing module */

}

Modules that use the kernel source must be compiled with gcc with the option
-I/usr/src/linux/include; this ensures that the files included will be from the proper
source tree.

Note that not all kernel variables are exported for modules to use, even if the code declares
them to be extern. The /proc/ksyms file or ksyms program display the exported symbols
(not many of which are useful for networking). Recent Linux kernels export both the
symbol and its version number using the EXPORT_SYMBOL (x) macro. For user created
variables, use the EXPORT_SYMBOL_NOVERS (x) macro instead or the linker will not retain the
variable in the kernel symbol table. Module writers may also want to use the
EXPORT_NO_SYMBOLS macro; modules export all of their variables by default.

11.2.2 Installing and Removing Modules

Installing and removing modules is as simple as calling a program with the name of the
compiled module. (You must be a superuser to install or remove a module.)

The insmod program installs a module; it first links the module with the kernel’s exported
symbol table to resolve references and then installs the code in kernel space.

/sbin/insmod module_name

The rmmod program removes an installed module and any references that it has exported.
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/sbin/rmmod module_name

The Ismod program lists all the currently installed modules:

/sbin/lsmod

Module Size Used by

cdrom 13368 0 (autoclean) [ide-cd]
3¢c59x 19112 1 (autoclean)

11.3 Example

This is a complete example of a very simple module.

simple_module.c

/* simple_module.c

*
* This program provides an example of how to install a trivial module
* into the Linux kernel. All the module does is put a message into
*  the log file when it is installed and removed.

*

#define MODULE

#include <linux/module.h>

/* kernel.h contains the printk function */
#include <linux/kernel.h>

[ KKk kkokokkok ok ok kokkokokskokkokok sk kkkkkkk Rk kkkkkkkkkk*  init_module
* the kernel calls this function when it loads the module */
int init_module() {
printk("<1>The simple module installed itself properly.\n");
return 0;
} /* init_module */

[ Fxskskskorok ok ok ok kbt kokkokok ok ok sksk ko ok kot ok ok skok ok ok sk kR ok kokkkokk - cleanup_module
* the kernel calls this function when it removes the module */
void cleanup_module() {
printk("<1>The simple module is now uninstalled.\n");
} /% cleanup_module */

This is the Makefile:
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# Makefile for simple_module

CC = gcc -I/usr/src/linux/include/config
CFLAGS = -02 -D__KERNEL__ -Wall
simple_module.o: simple_module.c

install:
/sbin/insmod simple_module

remove:
/sbin/rmmod simple_module

To use (must be root):

root# make

root# make install

root# make remove

root# tail /var/log/messages
. kernel: The simple module installed itself properly.
. kernel: The simple module is now uninstalled.
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Chapter 12

The proc File System

This chapter presents the virtual proc file system. It provides an overview of how the file
system works, shows how the existing network code uses the system, and details how to
write and use proc entries from programs.

12.1 Overview

The proc file system is so named because it is found in the /proc directory on most Linux
machines. NOT including the proc FS is a configuration option, but the system is a
powerful tool of which many programs make frequent use. While designed to appear as a
file system with directory structures and inodes, it is in fact a construct of registered
functions which provide information about important variables.

The proc directory has many subdirectories - one for each running process and others for
subsystems such as file systems, interfaces, terminals, and networking (/proc/net). There
are also many files in the main /proc directory itself - interrupts, ioports, loadavg, and
version to name a few. Within each process subdirectory (named for the process number)
are files that describe the process’ command line, current working directory, status, and so
on.

The kernel traps proc file access and instead of executing “normal” file operations on them
calls special (individually registered) functions instead. When a file in the /proc directory
is “created”, it is registered with a set of functions that tell the kernel what to do when the
file is read from or written to. Most entries only allow reads and they simply print out the
state of certain system variables for use by other programs or for perusal by knowledgeable
users.

The only tricky thing about using proc files is that the kernel calls the information

generation function each and every time the file is read; subsequent reads of a changing file
without copying and buffering the results may yield very different results. The best way to
use a proc file is to read it into a PAGE_SIZE-byte buffer. This will read the entire entry at
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once and the buffer will then allow consistent random accesses.

12.2 Network proc Files

This is a list of the most important files in the /proc/net/ directory, what they contain,
and a reference to the function and file that creates them. Note that there are many other
interesting proc entries, such as the /proc/sys files, /proc/ksyms, and /proc/modules to
name only a few.

arp displays the neighbor table (arp_tbl); the IP and hardware addresses, hardware type,
device, and flags. (arp_get_info() : net/ipv4/arp.c 988)

dev displays reception and transmission statistics for each registered interface

dev_stat displays number of received packets dropped and throttle and FASTROUTE
statistics (dev_proc_stats() : net/core/dev.c 1228)

netstat displays sync cookie, pruning, and ICMP statistics (netstat_get_info() :
net/ipv4/proc.c 355)

raw displays address, queue, and timeout information for each open RAW socket from
struct proto raw prot (get_netinfo() : net/ipv4/proc.c 165)

route displays the FIB table (main_table); the interface, address, gateway, flags, and
usage information. (fib_get_procinfo()) : net/ipv4/fib_frontend.c 109)

rt_cache displays the routing cache (rt_hash_table); the interface, address, gateway,
usage, source, and other information. (rt_cache_get_info() : net/ipv4/route.c 191)

sockstat displays number of sockets that have been used and some statistics on how many
were TCP, UDP, and RAW (afinet_get_info() : net/ipv4/proc.c 244)

tcp displays address, queue, and timeout information for each open TCP socket from
struct proto tcp_prot (get_netinfo() : net/ipv4d/proc.c 165)

udp displays address, queue, and timeout information for each open UDP socket from
struct proto udp_prot (get_metinfo() : net/ipv4/proc.c 165)

12.3 Registering proc Files

This section describes the simplest method for registering a read-only proc “file” entry
(available only in Linux 2.0 and later releases). It is possible to create a more fully
functional entry by defining file operations and inode_operations structures. However,
that method is significantly more complicated than the one presented here; look in the
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source code for details on implementing fully functional entry. The method described
below - defining a function and then registering and unregistering the function - provides
most of the functionality required for testing and tracking system resources. Only the
kernel can register a proc file; users can do so by building and installing kernel modules
(though only root can install and remove modules). These procedures assume that the
Linux source is installed and the kernel is compiled to use modules.

12.3.1 Formatting a Function to Provide Information

static int read_proc_function(char *buf,char **start,off_t offset,int len,int
unused)

This is the function that the Linux kernel will call whenever it tries to read from the newly
created proc “file”. The only parameter that is usually significant is buf - a pointer to the
buffer the kernel makes available for storing information. The others normally will not
change. (read_proc_function is of course the name of the new function.)

Typically this function prints out a header, iterates through a list or table printing its
contents (using the normal sprintf routine), and returns the length of the resulting string.
The only limitation is that the buffer (buf) is at most PAGE_SIZE bytes (this is at least
AKB).

For an example of this kind of function, look at the fib_get procinfo() function
beginning on line 109 of net/ipv4/fib_frontend.c. This function displays the contents of the
main FIB table.

12.3.2 Building a proc Entry

Because this is part of the file system, the entry needs an inode. This is easily constructed
using a struct proc_dir_entry:

#include <linux/proc_fs.h>
struct proc_dir_entry new_proc_entry = {

0, // low_ino - inode number (0 for dynamic)
5, // namelen - length of entry name
"entry", // name

S_IFREG | S_IRUGO, // mode

1, // nlinks

0, // uid - owner

0, // gid - group

0, // size - not used

NULL, // ops - inode operations (use default)
&read_proc_function // read_proc - address of read function

// leave rest blank!
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The contents of this block can be used as shown by simply replacing the namelen, name,
and read_proc_function fields with the desired values. Note that many of the kernel
defined entries have predefined inode numbers (like PROC_NET_ROUTE, part of an
enumeration defined in include/linux/proc_fs.h.

For an example of this kind of entry, look at the __init_func() function beginning on line
607 of net/ipv4/fib_frontend.c. This functions calls proc_net_register() (described
below) with a newly created proc_dir_entry structure.

12.3.3 Registering a proc Entry
Once the read function and the inode entry are ready, all that remains is to register the
new “file” with the proc system.

int proc_register(struct proc._dir_entry *dir, struct proc_dir_entry *entry)
int proc_net_register(struct proc.dir_entry *entry)

dir is a pointer to the directory in which the entry belongs - &proc_root and proc_net
(defined in include/proc_fs.h) are probably the most useful. entry is a pointer to the entry
itself, as created above. These two functions are identical except that proc_net_register
automatically uses the /proc/net directory. They return either 0 (success) or EAGAIN (if
there are no available inodes).

12.3.4 Unregistering a proc Entry

When an entry is no longer needed, it should be deleted by unregistering it.

int proc_unregister(struct proc_dir_entry *dir,int inode)
int proc_net_unregister(int inode)

dir is the proc directory in which the file resides, and inode is the inode number of the
file. (The inode is available in the entry’s struct proc_dir _entry.low_ino field if it is not
a constant.) Again, these functions are identical except that proc_net unregister
automatically uses the /proc/net directory. They return either 0 (success) or EINVAL (if
there is no such entry).

12.4 Example

This is a complete example of a module that installs a simple proc entry.

simple_entry.c
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/* simple_entry.c

*

* This program provides an example of how to install an entry into the
*  /proc File System. All this entry does is display some statistical
* information about IP.

*/

#define MODULE

#include <linux/module.h>

/* proc_fs.h contains proc_dir_entry and register/unregister prototypes */
#include <linux/proc_fs.h>

/* ip.h contains the ip_statistics variable */

#include <net/ip.h>

[ xskskskorok ok ok ok kbt kok ok skok ok ok kot ok otk sk ok ok kkok ok kkok ok kokkk - show_ip_stats
* this function is what the /proc FS will call when anything tries to read
*  from the file /proc/simple_entry - it puts some of the kernel global
* variable ip_statistics’s contents into the return buffer */

int show_ip_stats(char *buf,char **start,off_t offset,int len,int unused) {

len = sprintf(buf,"Some IP Statistics:\nIP Forwarding is ");
if (ip_statistics.IpForwarding)
len += sprintf(buf+len,"on\n");
else
len += sprintf(buf+len,"off\n");
len += sprintf(buf+len,"Default TTL: %lu\n",ip_statistics.IpDefaultTTL);
len += sprintf(buf+len,"Frag Creates: %lu\n",ip_statistics.IpFragCreates);
/* this could show more.... */
return len;
} /% show_ip_stats */

/**************************************************************** test_entry
* this structure is a sort of registration form for the /proc FS; it tells
*  the FS to allocate a dynamic inode, gives the "file" a name, and gives
*  the address of a function to call when the file is read */

struct proc_dir_entry test_entry = {

0, /* low_ino - inode number (0 for dynamic) */
12, /* namelen - length of entry name */
"simple_entry", /* name x/
S_IFREG | S_IRUGO, /* mode */
1, /* nlinks */
0, /* uid - owner x/
0, /* gid - group */
0, /* size - not used x/
NULL, /* ops - inode operations (use default) */
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&show_ip_stats /* read_proc - address of read function x/
/* leave rest blank! */

};

[ HK KKK K KKK KKK Kok Kok Kok ok koK koK KKK KKK KKK KKK Kok kK Rk Kk kkkk k- init_module
* this function installs the module; it simply registers a directory entry
*  with the /proc FS x*/

int init_module() {

/* register the function with the proc FS */
int err = proc_register(&proc_root,&test_entry);
/* put the registration results in the log */
if (lerr)
printk("<1> simple_entry: registered with inode %d.\n",
test_entry.low_ino);
else
printk("<1> simple_entry: registration error, code %d.\n",err);
return err;
} /x init_module */

[ xRtk kb skokkokok ok ok ok otk ok otk kool okkkok kol ok kkk ok kokkk - cleanup_module
* this function removes the module; it simply unregisters the directory
* entry from the /proc FS x/

void cleanup_module() {

/* unregister the function from the proc FS */
int err = proc_unregister(&proc_root,test_entry.low_ino);
/* put the unregistration results in the log */
if (lerr)
printk("<1> simple_entry: unregistered inode %d.\n",
test_entry.low_ino);
else
printk("<1> simple_entry: unregistration error, code %d.\n",err);
} /% cleanup_module */

This is the Makefile:

# Makefile for simple_entry

CC = gcc -I/usr/src/linux/include
CFLAGS = -02 -D__KERNEL__ -Wall
simple_entry.o: simple_entry.c

install:
/sbin/insmod simple_entry
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remove:
/sbin/rmmod simple_entry

To use (must be root):

root# make

root# make install

root# cat /proc/simple_entry

Some IP Statistics:

IP Forwarding is on

Default TTL: 64

Frag Creates: 0

root# make remove

root# tail /var/log/messages
. kernel: simple_entry: registered with inode 4365.
. kernel: simple_entry: unregistered inode 4365.
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Chapter 13

Example - Packet Dropper

This sample experiment inserts a routine into the kernel that selectively drops packets to a
given host. It discusses the placement of the code, outlines the data from an actual trial,
presents a lightweight analysis of the results, and includes the code itself.

13.1 Overview

This program is implemented as a module that, while installed, compares each outgoing
packet’s destination address to a given target. If they match, it randomly drops a
percentage of those packets. It does this for all IP traffic, no matter where it was generated
and what transport protocol it uses. Implementing this requires a modification to the
kernel (to allow a module access to the transmission functions) and a module that takes
advantage of that modification.

13.2 Considerations

Code Placement This code could be built directly into the kernel or it could be designed
as a module:

e Kernel - this is conceptually much simpler; simply adding some code to the
kernel is a fairly easy matter. However, it makes semi-permanent changes and
takes a long time to debug, since the entire kernel must be recompiled, installed,
and rebooted for every change.

e Module - this is much safer and easier since the (super) user can install, remove,
and debug modules quite painlessly. However, it requires access to the kernel
that is not always available - even from a module. The kernel does not always
export the variables that a module may need to access. (See the discussion on
the ksyms program in Chapter 11.)
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e Both - this is the best method; by performing a few minor modifications to the
kernel code to export necessary variables and make use of a module only if it is
loaded, a user can recompile the kernel once and then perform tests and
experiments with modules. This still has the disadvantage of opening potential
security holes on a system, but since only the experimenter knows how they are
implemented, this is a minimal risk.

Protocol Level This code could be implemented at many levels:

e Device Driver - this is a possibility since all traffic comes through the device.
However, this breaks the layering protocols and requires hacking a (presumably)
stable hardware driver.

e Generic Device Functions - this is the best choice, since this is the lowest level
through which all traffic travels (specifically the dev_queue_xmit () and
netif _rx() functions). It still violates the protocol layering, but all of the
modifications can be made in one section of code.

e IP Protocol - this is conceptually the right place to insert a special function,
either in the input, routing, or output routines. However, this is unsuitable
precisely because there are three different routines in the implementation that a
packet might go through - ip_forward() (forwarded packets), ip_queue xmit ()
(TCP packets), or ip_ build xmit() (UDP packets). See the coding sections in
Chapters 5 and 7 to see how these routines interact. These functions would be a
good choice for inserting a special-purpose dropper, but not one that affects all
traffic.

e Transport Protocol - these routines would be appropriate for affecting specific
traffic types (such as UDP only) but are not useful for this example.

13.3 Experimental Systems and Benchmarks

This example was implemented on two computers that are connected through a single
router as shown in Figure 13.1; the router runs the modifed kernel and packet dropper
module. In the general example, this represents traffic flowing between neon and eagle,
with dodge/viper dropping packets for eagle.

The switch is a Cisco Catalyst 2900 set up with Virtual LANs (VLANSs) for each
“subnetwork” (one for the source computer and one for the destination computer, with the
routing computer acting as the router between the two. The switch operates entirely on
the link level and is essentially invisible for routing purposes.

The routing computer (dodge/viper) is a Dell Optiplex GX1 with a Pentium II/350
processor and 128M of RAM. It has three 3Com 3c59x Ethernet cards with 10Mbps
connections to the switch.

One host computer (neon) is an AST Premmia GX with a Pentium/100 processor and 32M
of RAM. It has an AMD Lance Ethernet card with a 10Mbps connection to the switch.
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VLAN 1

ro—e ® o5

dodge - eagle
172.16.0.7 % network 172.16.1.0 172.16.0.34
el ] ® netmask 255.255.255.0 eth0
viper g
172.16.1.1 2
otho i network 172.16.0.0

netmask 255.255.0.0

ro—e ® ® o

VLAN 2 neon
172.16.1.5
eth0

dodgelviper routes between subnets
Switch acts as two Virtuals LANs (VLANS) for subnets

Figure 13.1: Experimental system setup.

The other host computer (eagle) is a Dell Optiplex XL590 with a Pentium/90 processor
and 32M of RAM. It has a 3Com 3c¢509 Ethernet card with a 10Mbps connection to the

switch.

All computers have the Red Hat 6.1 distribution of Linux; the source and destination
computers have standard recompiled version 2.2.14 kernels, while the router uses either a
standard (2.2.14) kernel or a slightly modified one as indicated.

The first benchmark is a “ping-pong” test that establishes a TCP connection and then
repeatedly sends packets back and forth. It returns a total transmission time (from start to
finish, not including making and closing the connection); dividing the time by the number
of iterations yields an average Round Trip Time (RTT). This test was run with 20,000
iterations of 5 byte packets and 5,000 iterations of 500 byte packets.

The second benchmark is a “blast” test that establishes a TCP connection and then sends
data from a source to a destination. It returns a total transmission time (from start to
finish, not including making and closing the connection); multiplying the number of
packets by the size of the packets and dividing by the time yields the throughput. This test
was run with 50,000 5 byte packets, 5,000 500 byte packets, and 1,000 1500 byte packets.

The benchmarks were run on both machines (i.e., from neon to eagle and from eagle to
neon), but in both cases only packets to eagle were dropped. In each trial the blast test
was run once with default settings (100 packets of 1 byte each) before running the
performance tests “for record” to ensure that the routing cache and any protocol tables
were in a normalized state. The complete suite was run ten times to capture variations
between trials (the averages are presented here). None of the machines (including the
router) were running any other user programs beyond a login shell and the appropriate
module, client, or server programs (not even X Windows).
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13.4 Results and Preliminary Analysis

13.4.1 Standard Kernel

These are the reference standards; these routines were run with the two computers directly
connected (NOT routed) and while the router had an unmodified Linux 2.2.14 kernel. The
error rate on such a direct connection is near zero.

ping-pong

Direct -

neon to eagle:
eagle to neon:

Routed -

neon to eagle:
eagle to neon:

blast

Direct -

neon to eagle:
eagle to neon:

Routed -

neon to eagle:
eagle to neon:

13.4.2

Drop Rate

(0.0%)
(0.0%)

Drop Rate

(0.0%)
(0.0%)

Mean Time (sec)

20K@5 5K@500
17.24 28.98
17.20 28.99
24.53 48.59
24 .36 48.46

Mean Time (sec)
1K*1500

50K*5 10K*500
0.56 3.19
0.78 3.03
0.56 3.19
0.77 3.19

Average RTT (millisec)

20K@5 5K@500
0.86 5.80
0.86 5.80
1.23 9.72
1.22 9.69

Throughput (Mbits/sec)

50K*5 10K*500 1K*1500
3.55 6.26 6.36
2.58 6.61 6.76
3.60 6.27 6.26
2.60 6.27 6.23

Modified Kernel Dropping Packets

These are the experimental results. The drop rate of 0.0% provides a reference for
measuring the overhead of calling the test and random functions without dropping any

packets.

ping-pong

neon to eagle:

Drop Rate
0.0%
0.1%
0.5%

Mean Time (sec)

20K@5 5K@500
25.55 49.12
29.87 51.11
44.78 58.07
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Average RTT (millisec)

20K@5 5K@500
1.28 9.82
1.49 10.22
2.24 11.61



1.0% 65.37 68.77 3.27 13.75
5.0% 245.51 160.09 12.28 32.02
10.0% 506.03 290.77 25.30 58.15
eagle to neon: 0.0% 25.53 49.21 1.28 9.84
0.1% 29.08 50.92 1.45 10.18
0.5% 45.87 59.21 2.29 11.84
1.0% 66.19 68.66 3.31 13.73
5.0% 235.68 156.94 11.78 31.39
10.0% 519.61 297.02 25.98 59.40
blast
Mean Time (sec) Throughput (Mbits/sec)
Drop Rate 50K*5 10K*500 1K*1500 50K*x5 10K*500 1K*1500
neon to eagle: 0.0% 0.55 3.19 1.91 3.64 6.26 6.27
0.1% 0.55 3.07 1.93 3.62 6.51 6.21
0.5% 0.55 2.95 1.76 3.64 6.77 6.82
1.0% 0.55 2.87 1.75 3.65 6.96 6.87
2.5% 0.59 3.36 2.04 3.38 5.59 5.90
5.0% 0.63 4.63 2.71 3.19 4.31 4.43
10.0% 1.06 7.08 5.11 1.89 2.83 2.35
20.0% 3.43 30.35 18.55 0.58 0.66 0.65
eagle to neon: 0.0% 0.79 3.21 1.93 2.53 6.23 6.23
0.1% 0.77 3.22 1.89 2.59 6.20 6.35
0.5% 0.80 3.24 1.88 2.51 6.17 6.39
1.0% 0.77 3.24 1.91 2.60 6.17 6.27
2.5% 0.79 3.17 1.90 2.53 6.31 6.33
5.0% 0.78 3.17 1.91 2.57 6.31 6.29
10.0% 0.81 3.85 2.51 2.48 5.20 4.78
20.0% 2.02 4.06 2.51 0.99 4.92 4.78

13.4.3 Preliminary Analysis

What follows is an elementary examination of the results. It is NOT intended as an
exhaustive analysis, and indeed the experiment was not extensive enough to provide hard
data from which to draw definite conclusions. However, this does demonstrate the
multitude of factors involved and the effects that a few lines of code can have on a network.
Further analysis, if desired, is left as an exercise for the reader.

The kernel modifications and module insertion had a small but measurable impact on a
TCP connection (measured by the increased RTT). For very small packets, this difference
was approximately 0.05 msec; for large packets it was 0.10 msec. Why should there be a
difference? Note that the direction of travel and packet size made a large difference on the
throughput. This is an indication that processor speed and layering overhead are affecting
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Ping-Pong Test (packets for eagle dropped)
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Figure 13.2: Ping-pong benchmark results.
Blast Test (packets for eagle dropped)
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12 5 byte é)acketsstandard neon-eagle) - 7
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Figure 13.3: Blast benchmark results.
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the RTT; for a 1500 byte packet, 66 bytes of wrappers (20 for TCP, 20 for IP, and at least
26 for Ethernet) are not very significant - but for a 5 byte packet, that overhead is very
large. Assume that the actual “cost” of inserting the module the delay for the larger
packets, 0.10 msec.

Dropping packets from a TCP connection resulted in a fairly linear drop in performance on
the ping-pong test; see the graph in Figure 13.2. This is as expected; when either a packet
or acknowledgement is lost, the sender pauses and then sends again. The RTT is also very
close (certainly within the expected experimental error) no matter which machine is the
“source”; again this is because the benchmark tests the behavior of both machines at the
same time.

At low packet sizes, the throughput was very different depending on which way data was
sent. This is because one machine (eagle) was slower than the other. For a large number
of very small packets, the chokepoint in the network is not the medium or the interface,
but the speed at which the processor can build and send packets. However, for larger
packet sizes, the throughput (for low error rate) for both sources is similar; in this case the
network is the limiting factor, not the processor.

The most surprising result is the apparent peak in throughput when the loss rate is
approximately 1% - better even than no loss at all (for blasted data; loss of ACKs sent
from the receiver to the source had little impact). This is a very counter-intuitive finding;
why should losing packets speed up the throughput? A 1% error might be just enough to
prevent a TCP exponential back-off algorithm from slowing the traffic rate. The immediate
ACK that the receiver sends when an out-of-sequence packet arrives might include window
size information that keeps the sender from pausing. Interrupts caused by out-of-sequence
packets might result in the scheduler running the benchmark process more frequently,
emptying the buffer window and again keeping the sender from pausing. There are many
potential causes; determining the real one would take much more study - but would be
very interesting.

13.5 Code

13.5.1 Kernel

The following code adds a trapdoor to the kernel. It creates a function that will be called
(if it exists) from within the dev_queue_xmit () function and exports it so that modules
will be able to use it. These lines are added directly to the source code; the kernel then has
to be recompiled. installed, and booted. Note that the kernel still functions normally
(albeit with one extra comparison) while no test module is installed.

net/core/dev.c (after line 579)
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int *test_function(struct sk_buff *)=0; /* new */
int dev_queue_xmit(struct sk_buff #*skb)...

...struct Qdisc *q;

if (test_function && (xtest_function) (skb)) { /* new x/
kfree_skb(skb) ; /* new */
return O; /* new */

} /* new */

#ifdef CONFIG_NET_PROFILE. ..

net/netsyms.c (after line 544)

extern int (*test_function) (struct sk_buff *); /* new */
EXPORT_SYMBOL_NOVERS(test_function); /* new */
EXPORT_SYMBOL (register_gifconf) ;...

13.5.2 Module

The following is the code for the packet dropping module itself. On installation, it
calculates a percentage cut-off and puts an address into the function pointer defined above.
From then on, any packets sent through dev_queue_xmit () will also pass through the
packet_dropper function, which compares the destination address to a hard coded one. If
they match and a random number comes up below the calculated cut-off, it drops the
packet; otherwise the packets pass through untouched. When the module is removed, it
resets the function pointer to 0 (null) again. (Note that this not very robust code depends
on two byte short integers for simplicity. The function get_random bytes() is only
accessible to the kernel - or modules, of course - and provides random numbers that are
“merely cryptographically strong”.)

packet_dropper.c

/* packet_dropper.c

*

* This program provides an example of how to install a module into a

* slightly modified kernel that will randomly drop packets for a specific
*  (hard-coded) host.

*

* See linux/drivers/char/random.c for details of get_random_bytes().

*

* Usage (must be root to use):
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*  /sbin/insmod packet_dropper
*  /sbin/rmmod packet_dropper
*/

#define MODULE
#define MAX_UNSIGNED_SHORT 65535

#include <linux/module.h>
#include <linux/skbuff.h> /% for struct sk_buff */

#include <linux/ip.h> /* for struct iphdr */

extern int (xtest_function) (struct sk_buff *); /* calling function */
extern void get_random_bytes(void *buf, int nbytes); /* random function */
unsigned short cutoff; /* drop cutoff */
float rate = 0.050; /* drop percentage */
__u32 target = 0x220010AC; /* 172.16.0.34 */

[ xkskrokkokskokkokok Rk ok kokkokskokokkokkokskkokskkok okl kokskkok sk ko skkokok kb sk ok kokk k- packet _dropper
* this is what dev_queue_xmit will call while this module is installed */
int packet_dropper(struct sk_buff #*skb) {
unsigned short t;
if (skb->nh.iph->daddr == target) {
get_random_bytes (&t,2);
if (t <= cutoff) return 1; /* drop this packet */
}
return O; /* continue with normal routine */
} /x packet_dropper */

[ 3k skskokokok sk skokok sk ok sk ok sk ok ok sk skok ok skoskok ook skoskskokkoksk sk kokkskskokok skskskokkkskokokokkskokkokkk - init_module
* this function replaces the null pointer with a real one */
int init_module() {
EXPORT_NO_SYMBOLS;
cutoff = rate * MAX_UNSIGNED_SHORT;
test_function = packet_dropper;
printk("<1> packet_dropper: now dropping packets\n");
return 0;
} /% init_module */

[ Hk Kk kok ok ok kR kokk ook ok ok ok ok kokkok ok ok ok ok ok ok kokkokokokok ok ok ok kokkokkok - cleanup_module
* this function resets the function pointer back to null */
void cleanup_module() {
test_function = 0;
printk("<1> packet_dropper: uninstalled\n");
} /* cleanup_module */
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Chapter 14

Additional Resources

14.1 Internet Sites

Linux Documentation Project http://metalab.unc.edu/mdw/index.html
Linux Headquarters http://www.linuxhq.com
Linux HOWTOs ftp://metalab.unc.edu/pub/Linux/docs/HOWTO

Linux Kernel Hackers’ Guide
http://metalab.unc.edu/mdw/LDP /khg/HyperNews/get/khg.html

Linux Router Project http://www.linuxrouter.org
New TTCP http://users.leo.org/ bartel
Red Hat Software http://www.redhat.com

Requests for Comment http://www.rfc-editor.org/isi.html

14.2 Books

Computer Networks Tanenbaum, Andrew, Prentice-Hall Inc., Upper Saddle River, NJ,
1996.

High Speed Networks Stallings, William, Prentice-Hall Inc., Upper Saddle River, NJ,
1998.

Linux Core Kernel Commentary Maxwell, Scott, CoriolisOpen Press, Scottsdale, AZ,
1999.

Linux Device Drivers Rubini, Alessandro, O’Reilly & Associates, Inc., Sebastopol, CA,
1998.
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Linux Kernel Internals Beck, Michael, et al., Addison-Wesley, Harlow, England, 1997.

Running Linux Welsh, Matt, Dalheimer, Matthias, and Kaufman, Lar, O’Reilly &
Associates, Inc., Sebastopol, CA, 1999.

Unix Network Programming, Vol. 1 (2d Ed.) Stevens, W. Richard, Prentice-Hall
Inc., Upper Saddle River, NJ, 1998.
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Chapter 15

Acronyms

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode (a protocol)
BSD Berkeley Software Distribution

DHCP Dynamic Hardware Configuration Protocol
DNS Domain Name Server

FIB Forwarding Information Base

GUI Graphical User Interface

ICMP Internet Control Message Protocol
INET Internet

IP Internet Protocol

ISP Internet Service Provider

LAN Local Area Network

LDP Linux Documentation Project

lo Loopback (device or interface)

MTU Maximum Transfer Unit

PPP Point-to-Point Protocol

RARP Reverse Address Resolution Protocol

RIP Routing Information Protocol
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RTT Round Trip Time

TCP Transmission Control Protocol
UDP User Datagram Protocol
UNH University of New Hampshire
VLAN Virtual Local Area Network
WAN Wide Area Network
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