
 1

Performance Evaluation and Comparison of
Westwood+, New Reno, and Vegas TCP Congestion

Control

Luigi A. Grieco and Saverio Mascolo
Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Italy

{a.grieco,mascolo}@poliba.it

Abstract
TCP congestion control has been designed to ensure Internet
stability along with fair and efficient allocation of the network
bandwidth. During the last decade, many congestion control
algorithms have been proposed to improve the classic Tahoe/Reno
TCP congestion control. This paper aims at evaluating and
comparing three control algorithms, which are Westwood+, New
Reno and Vegas TCP, using both Ns-2 simulations and live
Internet measurements. Simulation scenarios are carefully
designed in order to investigate goodput, fairness and friendliness
provided by each of the algorithms. Results show that Westwood+
TCP is friendly towards New Reno TCP and improves fairness in
bandwidth allocation whereas Vegas TCP is fair but it is not able
to grab its bandwidth share when coexisting with Reno or in the
presence of reverse traffic because of its RTT-based congestion
detection mechanism. Finally results show that Westwood+
remarkably improves utilization of wireless links that are affected
by losses not due to congestion.

1. INTRODUCTION
Internet stability is still largely based on the congestion control
algorithm proposed by Van Jacobson at the end of the eighties [1],
which is known as Tahoe TCP, on its first modification, which is
known as Reno TCP, and other variants described in [3]-[5]. The
Van Jacobson congestion control algorithm has been designed by
following the end-to-end principle and has been quite successful
from keeping the Internet away from congestion collapse [18]-
[20]. Two variables, congestion window (cwnd) and slow start
threshold (ssthresh), are used to throttle the TCP input rate in
order to match the network available bandwidth. All these
congestion control algorithms exploit the Additive-
Increase/Multiplicative-Decrease (AIMD) paradigm, which
additively increases the cwnd to grab the available bandwidth and
suddenly decreases the cwnd when network capacity is hit and
congestion is experienced via segment losses, i.e. timeout or
duplicate acknowledgments. AIMD algorithms ensure network
stability but they don’t guarantee fair sharing of network resources
[1], [6],[7], [21].
After the introduction of the Van Jacobson algorithm research on
TCP congestion control become very active and several end-to-
end congestion control algorithms have been proposed since then
to improve network stability, fair bandwidth allocation and
resource utilization of high-speed networks and wireless networks
[2,3,4,9,12,14,20,32,33,39]. In fact, today TCP is not well suited
for wireless links since losses due to radio channel problems are

misinterpreted as a symptom of congestion by current TCP
schemes and lead to an undue reduction of the transmission rate.
Thus, TCP requires supplementary link layer protocols such as
reliable link-layer or split-connections approach to efficiently
operate over wireless links [2,10,21,33,34].
Vegas TCP was the first attempt to depart from the loss-driven
paradigm of the TCP by introducing a mechanism of congestion
detection before packet losses [9]. In particular, Vegas TCP
computes the difference between the actual input rate (cwnd/RTT)
and the expected rate (cwnd/RTTmin), where RTT is the Round
Trip Time and RTTmin is the minimum measured round trip time,
to infer network congestion. In particular, if the difference is
smaller than a threshold α then the cwnd is additively increased,
whereas if the difference is greater than another threshold β then
the cwnd is Additively Decreased; finally, if the difference is
smaller than β and greater than α, then the cwnd is kept constant
[9]. In [11] it has been shown that Vegas TCP ensures network
stability but it is not able to grab its own bandwidth share when
interacting with algorithms that systematically hits network queue
capacity as Reno.
Westwood TCP is a new congestion control algorithm that is
based on end-to-end bandwidth estimate [12]. In particular,
Westwood TCP estimates the available bandwidth by counting
and filtering the flow of returning ACKs and adaptively sets the
cwnd and the ssthresh after congestion by taking into account the
estimated bandwidth. The original bandwidth estimation
algorithm fails to work properly in the presence of ACK
compression [41]. Thus a slightly modified version of the
bandwidth estimation algorithm has been proposed in [14] to cope
with ACK compression effect. We call Westwood+ the original
Westwood algorithm with the enhanced bandwidth estimate.
Furthermore, in [14] it has been shown via a mathematical
analysis that Westwood+ is friendly towards Reno TCP and fairer
than Reno in bandwidth allocation.
This paper aims at comparing Westwood+, New Reno and Vegas
TCP. New Reno is an improved version of Reno that avoids
multiple reductions of the cwnd when several segments from the
same window of data get lost [3]. New Reno TCP has been
considered because it is the leading Internet congestion control
protocol [27]. Vegas TCP has been considered because it also
proposes, as Westwood+, a new mechanism for throttling the
congestion window that is based on measuring the network
congestion status via RTT measurements. Moreover, Vegas TCP
provides the basic ideas behind the new Fast TCP congestion
control algorithm, which has been recently proposed by

 2

researchers at Caltech [39]. In authors’ words, “Fast TCP is a sort
of high-speed version of Vegas” [40]. At the time of this paper
Fast TCP is still in a trial phase and authors do not have released
any kernel code or ns-2 implementation. Being based on RTT
measurements to infer congestion, it could inherit all drawbacks
of Vegas that will be illustrated in this paper, mainly the
incapacity to grab bandwidth when coexisting with Reno traffic or
in the presence of reverse traffic.
For evaluation and comparison purposes, computer simulations
using the ns-2 simulator [16], and measurements using a Linux
implementation, over the real Internet, have been collected. In
particular, ns-2 simulations have been carried out over single and
multi bottleneck scenarios with link capacities ranging from
1Mbps to 100Mbps, for various buffer sizes and in the presence of
homogeneous and heterogeneous traffic sources. Moreover,
Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit
(GEO) satellite scenarios in the presence of lossy links have been
simulated. Simulation results have shown that: (1) Westwood+
TCP is friendly towards New Reno TCP; (2) Weswtood+ TCP
improves the fairness in bandwidth sharing with respect to New
Reno TCP; (3) Vegas TCP is not able to grab its own bandwidth
share when coexisting with New Reno TCP [11] or in the
presence of reverse traffic; (4) Westwood+ improves the
utilization of wireless (i.e. satellite) links with respect to both
Vegas and New Reno in the presence of uniform or bursty losses.
The paper is organized as follows: Section 2 outlines the
Westwood+ algorithm; Section 3 compares New Reno, Vegas and
Westwood+ using the ns-2 simulator; Section 4 compares New
Reno and Westwood+ using live Internet experiments; finally, the
last section draws the conclusions.

2. WESTWOOD+ TCP
This section describes the Westwood+ congestion control
algorithm. In particular, Section 2.1 describes the control
algorithm, Section 2.2 the bandwidth estimation algorithm used
by the control algorithm and section 2.3 summarizes some results
on mathematical evaluation of fairness and friendliness of Reno
and Westwood+ TCP.

2.1 The algorithm
The Westwood+ algorithm is based on end-to-end estimation of
the bandwidth available along the TCP connection path [12],[14].
The estimate is obtained by filtering the stream of returning ACK
packets and it is used to adaptively set the control windows when
network congestion is experienced. In particular, when three
DUPACKs are received, both the congestion window (cwnd) and
the slow start threshold (ssthresh) are set equal to the estimated
bandwidth (BWE) times the minimum measured round trip time
(RTTmin); when a coarse timeout expires the ssthresh is set as
before while the cwnd is set equal to one.
The pseudo code of the Westwood+ algorithm is reported below:
a) On ACK reception:
 cwnd is increased accordingly to the Reno algorithm;

the end-to-end bandwidth estimate BWE is computed;
b) When 3 DUPACKs are received:

ssthresh =max(2, (BWE* RTTmin) / seg_size);
cwnd = ssthresh;

c) When coarse timeout expires:
ssthresh = max(2,(BWE* RTTmin) / seg_size);
cwnd = 1;

From the pseudo-code reported above, it turns out that

Westwood+ additively increases the cwnd as Reno, when ACKs
are received. On the other hand, when a congestion episode
happens, Westwood employs an adaptive setting of cwnd and
ssthresh so that it can be said that Westwood+ follows an
Additive-Increase/Adaptive-Decrease paradigm [14].
It is worth noting that the adaptive decrease mechanism employed
by Westwood+ TCP improves the stability of the standard TCP
multiplicative decrease algorithm. In fact, the adaptive window
shrinking provides a congestion window that is decreased enough
in the presence of heavy congestion and not too much in the
presence of light congestion or losses that are not due to
congestion, such as in the case of unreliable radio links.
Moreover, the adaptive setting of the control windows increases
the fair allocation of available bandwidth to different TCP flows.
This result can be intuitively explained by considering that the
window setting of Westwood+ TCP tracks the estimated
bandwidth so that, if this estimate is a good measurement of the
fair share, then the fairness is improved. Alternatively, it could be
noted that the setting cwnd = B×RTTmin sustains a transmission
rate (cwnd/RTT) = (B×RTTmin)/RTT that is smaller than the
bandwidth B estimated at the time of congestion: as a
consequence, the Westwood+ TCP flow clears out its path
backlog after the setting thus leaving room in the buffers for
coexisting flows, which improves statistical multiplexing and
fairness.

2.2 The end-to-end bandwidth estimate
The AIMD algorithm can be viewed as an end-to-end method to
obtain a “rough” but robust measurement of the best effort
bandwidth that is available along a TCP path.
The first attempt to exploit ACK packets to improve bandwidth
estimation is the packet pair (PP) algorithm, which tries to infer
the bottleneck available bandwidth at the starting of a connection
by measuring the interarrival time between the ACKs of two
packets that are sent back to back [23]. Hoe proposes a refined PP
method for estimating the available bandwidth in order to properly
initialize the ssthresh: the bandwidth is calculated by using the
least-square estimation on the reception time of three ACKs
corresponding to three closely-spaced packets [24]. Allman and
Paxson evaluate the PP techniques and show that in practice they
perform less well than expected [25]. Lai and Baker propose an
evolution of the PP algorithm for measuring the link bandwidth in
FIFO-queuing networks [26]. The method consumes less network
bandwidth while maintaining approximately the same accuracy of
other methods, which is poor for paths longer than few hops. The
inaccuracy of the algorithms based on the packet pair approach is
due to the fact that the interarrival times between consecutive
segments at the receiver can be very different from the interarrival
times between the corresponding ACKs at the sender. It will be
shown in the following section that this effect is much more
significant in the presence of congestion along the ACK path. Jain
and Dovrolis propose to use streams of probing packets to
measure the end-to-end available bandwidth, which is defined as
the maximum rate that the path can provide to a flow, without
reducing the rate of the rest of the traffic. The estimate is
computed over an averaging interval [36]. Finally, they focus on
the relationship between the available bandwidth in a path they
measure and the throughput of a persistent TCP connection. They
show that the averaged throughput of a TCP connection is about
20-30% more than the available bandwidth measured by their tool
due to the fact that the TCP probing mechanism gets more

 3

bandwidth than what was previously available in the path,
grabbing part of the throughput of other connections. We notice
that the latter result is not surprising being a consequence of the
fundamental property of the TCP congestion control algorithm for
which a new joining TCP flow must get its bandwidth share from
existing flows.
A similar technique, based on using streams of probing packets,
has been proposed by Melander et. al [37]. It uses sequences of
packet pairs at increasing rates and estimates the available
bandwidth by comparing input and output rates of different packet
pairs.
Westwood+ TCP proposes an end-to-end estimate of the “best-
effort” available bandwidth by properly counting and filtering the
flow of returning ACKs [12]. A sample of available bandwidth

kkk /db ∆= is computed every RTT, where dk is the amount of
data acknowledged during the last RTT = k∆ . The amount dk is
determined by a proper counting procedure that considers delayed
ACKs and duplicate ACKs: a duplicate ACK counts for one
delivered segment, a delayed ACK for two segments, a
cumulative ACK counts for one segment or for the number of
segments exceeding those already accounted for by previous
duplicate acknowledgements (see [12] for more details on this).
Bandwidth samples bk are low-pass filtered since congestion is
due to low frequency components [31], and because of delayed
ACK option [13,22]. In [42] the following time-invariant low-
pass filter has been proposed as an alternative to the original time-
varying filter of Westwood TCP [12]:

kkk bbb ⋅−+⋅= −)1(ˆˆ
1 αα (1)

where α is a constant set equal to 0.9. The filter (1) reveals to be
particularly suited for kernel code implementation, where floating
point operations should be avoided [44].
It should be noted that bk are samples of used bandwidth that
coincide with the “best-effort” available bandwidth when the
connection hits network capacity and experiences losses.
Measuring the actual rate a connection is achieving during the
data transfer as done by Westwood+ TCP is a different and much
easier task than estimating the bandwidth available at the
beginning of a TCP connection going over a shared FIFO queuing
network.
To give an insight into the bandwidth estimation algorithm, Fig. 1
shows the bandwidth computed at congestion instants by 20
Westwood+ or 20 Westwood flows sharing a 10Mbps bottleneck
in the presence of reverse traffic contributed by 10 TCP long lived
New Reno connections. Fig. 1(a) shows that all the 20
Westwood+ connections estimate a best-effort available
bandwidth that reasonably approaches the fair share of 0.5Mbps.
On the other hand, Fig. 1(b) highlights that Westwood
overestimates up to 100 times the fair share due to ACK
compression.

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 20 40 60 80 100

s

B
an

dw
id

th
 e

st
im

at
e

(b
ps

)

Fair share

(a)

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 20 40 60 80 100

s

B
an

dw
id

th
 e

st
im

at
e

(b
ps

)

Fair share

(b)

Figure 1. Bandwidth estimates of 20 TCP flows in the presence
of ACK compression: (a) Westwood+; (b) Westwood.

To conclude this section we report some considerations on the
end-to-end bandwidth estimate of Westwood+ and on the backlog
estimate of Vegas. The bandwidth estimate employed by
Westwood+ TCP measures the low frequency components of the
used bandwidth samples bk, which coincides with the “best-effort”
available bandwidth of a TCP sender at the end of the slow-
start/congestion-avoidance probing phase. We remark that the
estimate (1) is different from measuring the low frequency
components of the sending rate cwnd/RTT, where cwnd/RTT is the
measure of the instantaneous throughput employed by Vegas
TCP. In fact, the Vegas actual rate cwnd/RTT is a measure of the
available bandwidth that is based on the number of sent packets
(cwnd) and not on the number of acknowledged packets dk. As a
consequence, Vegas samples do not take into account that a
fraction of sent packets could be lost thus leading to available
bandwidth overestimate. To illustrate this point, we simulate a
single Westwood+ connection that sends data through a 1Mbps
bottleneck link. Fig. 2 shows the bandwidth estimates obtained by
filtering the bk samples or the cwnd/RTT samples using the filter
(1). Results confirm that the bandwidth estimate obtained by
filtering the ACKs is more accurate and less oscillating than the
one obtained by filtering the input rate, which, in fact, provides an
overestimate of the available bandwidth.

 4

7.0E+05

8.0E+05

9.0E+05

1.0E+06

1.1E+06

1.2E+06

0 20 40 60 80 100s

bp
s

BWE
Input Rate
Bottleneck Capacity

Figure 2. Bandwidth estimate and input rate.

2.3 Mathematical evaluation of fairness and

friendliness
This section investigates the intra-protocol fairness in bandwidth
allocation provided by Reno and Westwood+ and their inter-
protocol friendliness using the mathematical models of the Reno
and Westwood+ throughputs reported in [14,27,28]. In particular,
it has been shown that when the average segment loss probability
p is low, the Reno throughput is proportional to the inverse of the
average round trip time RTT and to p/1 as follows [28]:

p
)p(

RTT
T Reno −= 121

 (2)

Under the same assumptions, it has been shown that Westwood+
TCP provides the following steady state throughput [14]:

p
p

TRTT
T

q

West −
⋅

= 11 (3)

where Tq is the average queuing time equal to the difference
between RTT and the minimum round trip time RTTmin.
By comparing (2) and (3) it results that both throughputs of
Westwood+ and Reno depend on p/1 , that is Westwood+ and
Reno are friendly to each other. Moreover, since flows with
different RTTs experience the same mean queuing time Tq, Eq. (3)
shows that the throughput of Westwood+ depends on round trip

time as RTT/1 whereas the throughput of Reno as RTT/1 ,
that is, Westwood+ increases fair sharing of network capacity
between flows with different RTTs. Friendliness and fairness will
be investigated through simulations in the next sections to confirm
these theoretical results.

3. SIMULATION-BASED COMPARISON
In this section we evaluate and compare Westwood+, New Reno
and Vegas TCP using the ns-2 simulator [16,38]. Simple scenarios
are considered in order to illustrate the fundamental features of the
considered protocol dynamics whereas more complex topologies
are considered to test the protocols in more realistic settings. In
particular, single, multi-bottleneck and mixed wired/wireless
scenarios are considered. Each considered scenario is particularly
useful to highlight a particular feature of the dynamic behavior of
the protocols or to evaluate a specific metric. In all considered
scenarios, unless otherwise specified, the timestamp option is
enabled; destinations implement the delayed ACK option except
when Vegas is used, since its congestion avoidance mechanism is

based on RTT measurements [9, 22]. Packets are 1500 Bytes long
and buffer sizes are set equal to the link bandwidth times the
maximum round trip propagation time unless otherwise specified.
The initial congestion window has been set equal to 3 segments
[43]. The receiver window size and the initial ssthresh are set
equal to a value greater than the pipe network capacity so that
flows are always network constrained and grab the available
bandwidth using slow-start when the connection starts.

3.1 A simple single-connection scenario
In order to analyze the fundamental dynamics of the considered
TCP congestion control algorithms, we start by considering the
single connection scenario depicted in Fig. 3. The TCP1
connection is persistent and sends data over a 2Mbps bottleneck
link. The RTT is 250ms. Ten ON-OFF New Reno TCP senders
inject traffic along the ACK path of the single TCP connection,
i.e. they generate reverse traffic for the TCP connection on the left
side of Fig. 3. Reverse traffic aims at provoking congestion along
the ACK path and at exciting ACK compression, which is
important to be considered since it exacerbates the bursty nature
of the TCP [41].

Figure 3. Simulation scenario.

The TCP1 connection starts at t=0. The 10 TCP connections on
the backward path follow an OFF-ON-OFF-ON pattern in order to
investigate the effect of reverse traffic. In particular, the reverse
traffic is ON during the intervals [250s, 500s] and [750s, 1000s]
and is silent during the intervals [0s, 250s] and [500s, 750s].
Tables I reports the goodputs that have been measured during
each interval.

Table I. Goodputs of a single TCP connection.
 [0s,250s]

(Mbps)
[250s,500s]

(Mbps)
 [500,750s]

(Mbps)
 [750s,1000s]

(Mbps)
New Reno 1.86 1.62 1.99 1.64
Vegas 1.97 0.48 1.97 0.51
Westwood+ 1.86 1.68 1.99 1.69

The Goodput has been computed as follows:

timetransfer
datatedretransmitdatasentGoodput

_
)__(−=

When the reverse traffic is OFF, goodputs of all considered TCPs
approaches the bottleneck link capacity. However, when the
reverse traffic is ON Vegas provides the worst goodput whereas
Westwood+ obtains a slightly better goodput with respect to New
Reno TCP.

TCP1
source

10 TCP
sources

Forward Traffic

Reverse Traffic

TCP1
Sink

10 TCP
Sinks

 5

To get a further insight, Figs. 4-5 plot the cwnd and the ssthresh
dynamics. New Reno and Westwood+ TCP achieve a larger cwnd
during the time intervals when the reverse traffic is off. The
reason is that, when the reverse traffic is silent, New Reno and
Westwood+ TCP increase the cwnds up to the bandwidth delay
product, which is roughly 40 segments, plus the bottleneck queue
size, which is 40 segments too, before experiencing congestion;
this is shown in Figs. 4 and 5 where the cwnds of New Reno and
Westwood+ systematically reach the value of 80 segments before
being reduced by following the Multiplicative Decrease or
Adaptive Decrease mechanism, respectively. On the other hand,
when the reverse traffic is turned on, both New Reno and
Westwood+ can experience a congestion episode as soon as the
cwnd is larger than the buffer size because of the burstiness of the
TCP due to ACK compression. However, it should be noted that
the ssthresh dynamics of Westwood+ is less sensitive to
congestion along the ACK path with respect to New Reno because
of the bandwidth estimate used for its setting.
Regarding Vegas, Fig. 6 shows that the cwnd is constant and
approaches the bandwidth delay product when the reverse traffic
is off, thus providing an efficient link utilization. On the other
hand, when the reverse traffic is on, the cwnd keeps very low
values thus preventing link utilization. The reason is that the
reverse traffic provokes queuing delays along the backward path,
which increases the RTT.

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800 900 1000
s

Se
gm

en
ts

cwnd
ssthresh

Figure 4. cwnd and ssthresh of a single New Reno TCP flow
with reverse traffic contributed by 10 New Reno TCP flows.

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800 900 1000
s

Se
gm

en
ts

cwnd
ssthresh

Figure 5. cwnd and ssthresh of a single Westwood+ TCP flow
with reverse traffic contributed by 10 New Reno TCP flows.

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800 900 1000
s

Se
gm

en
ts

cwnd
ssthresh

Figure 6. cwnd and ssthresh of a single Vegas TCP flow with
reverse traffic contributed by 10 New Reno TCP flows

As a consequence, the Vegas connection on the forward path
additively shrinks the cwnd thus obtaining a poor utilization of the
bottleneck link. We have investigated more this point to see if the
kind of used reverse traffic is of importance. Fig. 7 shows that
Vegas is not able to grab the bottleneck link also when the reverse
traffic is contributed by 10 Vegas connections, that is, Vegas does
not provide full link utilization whatever source type of reverse
traffic is considered. To complete the comparison we report, for
this time only, the behavior of Reno TCP. Fig. 8 shows that Reno
is heavily affected by the presence of reverse traffic. Therefore,
since now on, we will always consider the New Reno TCP.

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800 900 1000
s

Se
gm

en
ts

cwnd
ssthresh

Figure 7. cwnd and ssthresh of a single Vegas TCP flow with
reverse traffic contributed by 10 Vegas TCP flows.

Based on the simulations above reported and on others that we do
not report here, we can conclude that the reverse traffic heavily
affects protocol behaviors. Therefore, the reverse traffic will be
always active in all scenarios we will consider in the sequel.
Moreover, since we have seen that the effect of reverse traffic
does not depend significantly on the TCP control algorithm that
generates it, we will consider always New Reno type reverse
traffic because it is the more efficient and today used TCP.

 6

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000
s

Se
gm

en
ts

cwnd
ssthresh

Figure 8. cwnd and ssthresh of a single Reno TCP flow with
reverse traffic contributed by 10 New Reno TCP flows.

We conclude this section by noting that Fig. 4 and 5 show that
Westwood+ and Reno exhibit a cyclic behavior that continuously
probes for network capacity. The main consequence of this
behavior is that, when Westwood+ and New Reno coexist, they
are friendly to each other; on the other hand, when Vegas coexists
with New Reno or Westwood+ it gives up bandwidth to New
Reno or Westwood+ since Vegas lacks of this probing behavior
[11].

3.2 Single bottleneck scenario
The scenario depicted in Fig. 11, where M TCP sources with
different RTTs share a 10Mbps bottleneck link, is particularly
suited for evaluating goodput and fairness in bandwidth
allocation. The M TCP flows are persistent and controlled by the
same algorithm in order to evaluate the intra-protocol fairness.
RTTs are uniformly spread in the interval [20+230/M, 250]ms,
with M ranging from 10 to 200, to investigate the fairness with
respect to the round trip time. Simulations last 1000s during which
all the TCP sources send data. In order to obtain ACK
compression, 10 TCP New Reno senders inject traffic along the
ACKs path of the M connections.

Figure 11. Single bottleneck scenario.

Fig. 12 shows the total goodput, which is defined as the sum of
the goodputs of all the M TCP connections on the forward path. In
particular, the figure shows that when M is larger than 40 the total
goodput approaches the bottleneck link capacity. On the other
hand, when M is smaller than 40, Vegas provides a very low total
goodput. Again this phenomenon is due to the TCP traffic on the
backward path, which has a significant impact on Vegas TCP (see
also Figs. 6, 7).

Figure 12. Total goodput of M TCP connections

Fig. 13 plots the Jain fairness index [17]:

()
∑ =

∑ ==
M
i

ibM

M
i ib

FIJ

1
2

2
1

where bi is the goodput of the ith connection and M are the
connections sharing the bottleneck. The Jain fairness index
belongs to the interval [0,1] and increases with fairness reaching
the maximum value at one.
Fig. 13 shows that Westwood+ improves fairness in bandwidth
sharing with respect to New Reno TCP when M<60. The reason is
that RTTs are uniformly spread over the interval [20+230/M,
250]ms so that, for smaller M, RTTs are more distant, which
increases the unfair behavior of TCP as stated by Eqs. (2) and (3).
Regarding Vegas, it exhibits the best jain fairness index, but with
the lowest goodput (see Fig. 12).

Figure. 13. Jain fairness index over a 10Mbps bottleneck.

To provide a “visual” look into the fairness issue, the sequence
numbers of 20 New Reno or 20 Westwood+ or 20 Vegas
connections sharing a 10Mbps bottleneck are shown in Figs. 14-
16, respectively. Figs. 14 and 15 show that the New Reno final
sequence numbers are spread in the interval [26693, 64238]
whereas the Westwood+ ones are in the shorter interval [28822,
53423]. Fig. 16 shows that Vegas is fair but provides very low
goodput due to the presence of reverse traffic (see Fig. 12).
To summarize simulation results of this section, we can say that
both Westwood+ and New Reno achieve full link utilization with
Westwood+ providing improved intraprotocol fairness with
respect to New Reno. On the other hand, Vegas is fair but it is
unable to utilize the network bandwidth.

0.0E+00
1.0E+06
2.0E+06
3.0E+06
4.0E+06
5.0E+06
6.0E+06
7.0E+06
8.0E+06
9.0E+06
1.0E+07

0 20 40 60 80 100 120 140 160 180 200

M=No. of TCP connections

To
ta

l G
oo

dp
ut

 (b
ps

)

New Reno
Vegas
Westwood+

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

0 20 40 60 80 100 120 140 160 180 200

M

Fa
irn

es
s I

nd
ex

New Reno
Vegas
Westwood+

TCP1
source

10 TCP
sources

Forward Traffic

Reverse Traffic

TCP1
Sink

TCPM
Sink

10 TCP
Sinks

TCPM
source

 7

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000

s

Se
qu

en
ce

 N
um

be
rs

 (S
eg

m
en

ts
)

Figure 14. Sequence numbers of 20 New Reno TCP

connections

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000

s

Se
qu

en
ce

 N
um

be
rs

 (S
eg

m
en

ts
)

Figure 15. Sequence numbers of 20 Westwood+ TCP.

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000

s

Se
qu

en
ce

 N
um

be
rs

 (S
eg

m
en

ts
)

Figure 16. Sequence numbers of 20 Vegas TCP connections.

3.3 Multi bottleneck scenario
The multi-bottleneck scenario is particularly suited to investigate
the inter-protocol friendliness of New Reno, Westwood+ and
Vegas TCP. The topology depicted in Fig. 17 is characterized by:
(a) N hops; (b) one persistent connection C1 going through all the
N hops; (c) 2N persistent sources C2;C3;C4 … C2N+1 transmitting
cross traffic data over every single hop. The capacity of the
entry/exit links is 100Mbps with 20ms propagation delay. The
capacity of the links connecting the routers is 10Mbps with 10ms
propagation delay. Router queue sizes have been set equal to 125
packets, which corresponds to the bandwidth delay product of a
typical RTT of 150ms. Simulation lasts 1000s during which the
cross traffic sources are always active. The connection C1 is

persistent and starts at time t = 10s. Notice that the described
scenario is a ”worst case” scenario for the source C1 since: (1) C1
starts data transmission when the network bandwidth has been
grabbed by the cross traffic sources; (2) C1 has the longest RTT
and experiences drops at each router it goes through.

We will consider the following 4 scenarios:
Scenario 1. The C2,C3,C4 … C2N+1 sources of cross traffic are
controlled by New Reno TCP whereas the C1 connection is
controlled by New Reno, Vegas or Westwood+, respectively. This
scenario aims at comparing New Reno, Vegas or Westwood+,
when going through an Internet dominated by New Reno traffic.
In other terms, this scenario allows us to investigate the capacity
of New Reno, Vegas and Westwood+ to grab network bandwidth
when competing with New Reno cross traffic, which is the
friendliness of New Reno TCP towards Vegas or Weswtood+
TCP.
Fig. 18 shows the goodput of the C1 connection as a function of
the number of hops; the fair share is 5Mbps. The goodput of the
C1 connection monotonically decreases with the number of hops
because of increased loss ratio and RTT. Westwood+ roughly
achieves the same goodput as New Reno, whereas Vegas is again
not able to grab its bandwidth share in a “New Reno
environment”.
Fig. 19 shows that the total goodput, which is now computed as
the goodput of the C1 connection + average of the C2,C4..C2N
connection goodputs, does not vary significantly with the number
of hops. This is due to the fact that the total goodput mainly
depends on the behavior of the cross traffic connections
C2,C4..C2N whereas the C1 connection has a negligible impact on
the total goodput.

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 2 3 4 5 6 7 8 9 10
No. of traversed hops

G
oo

dp
ut

 o
f t

he
 C

1
co

nn
ec

tio
n

(b
ps

)

New Reno
Vegas
Westwood+
Fair share

Figure 18. C1 Goodput vs. number of traversed hops in the
presence of New Reno cross traffic.

Figure 17. Multi bottleneck topology.

C1
Sink1

C2

R

Sink2

C3Sink3

R R

C5 Sink5

R

C4 Sink4

1th hop 2th hop

 8

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

1 2 3 4 5 6 7 8 9 10
No. of traversed hops

To
ta

l G
oo

dp
ut

 (b
ps

)

New Reno
Vegas
Westwood+

Figure 19. Total Goodput vs. number of traversed hops in the
presence of New Reno cross traffic.

Scenario 2. The C2;C3;C4 … C2N+1 sources of cross traffic are
controlled by Westwood+ TCP whereas the C1 connection is
alternatively controlled by New Reno, Vegas or Westwood+. This
scenario allows us to investigate the friendliness of Westwood+
towards New Reno and Vegas TCP. Fig. 20 shows the goodput of
the C1 connection as a function of the number of traversed hops.
Again, it shows that Vegas is not able to grab its bandwidth share.
Moreover, a comparison of the New Reno curves in Fig. 18 and
Fig. 20 shows that the C1 New Reno achieves a slightly greater
goodput when going through Westwood+ cross-traffic than when
going through New Reno cross-traffic, that is, Westwood+ is more
than friendly towards New Reno. Also in this case, the total
goodput, which is reported in Fig. 21, does not vary significantly
with N.

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 2 3 4 5 6 7 8 9 10
No. of traversed hops

G
oo

dp
ut

 o
f t

he
 C

1
co

nn
ec

tio
n

(b
ps

)

New Reno
Vegas
Westwood+
Fair share

Figure 20. C1 Goodput vs. number of traversed hops in the
presence of Westwood+ cross traffic.

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

1 2 3 4 5 6 7 8 9 10
No. of traversed hops

To
ta

l G
oo

dp
ut

 (b
ps

)

New Reno
Vegas
Westwood+

Figure 21. Total Goodput vs. number of traversed hops in the
presence of Westwood+ cross traffic.

Scenario 3. The C2;C3;C4 … C2N+1 sources of cross traffic are
controlled by Vegas TCP whereas the C1 connection is
alternatively controlled by Reno, Vegas or Westwood+. This
scenario investigates the friendliness of Vegas towards Reno and
Westwood+ TCP. Fig. 22 shows that Reno and Westwood+
basically achieve the same goodput, which is larger than the fair
share for any number of traversed hops: the reason is that the
Vegas cross traffic, differently from New Reno and Westwood+,
avoids to systematically fill the queues thus leaving more room
for the C1 traffic. The total goodput is very low when the C1
connection is controlled by Vegas, whereas it approaches the
10Mbps link capacity when the C1 connection is controlled by
New Reno or Westwood+ (see Fig. 23). This result again shows
that the Vegas cross traffic connections C2,C4..C2N are far from
providing an efficient utilization of the network capacity.

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 2 3 4 5 6 7 8 9 10
No. of traversed hops

G
oo

dp
ut

 o
f t

he
 C

1
co

nn
ec

tio
n

(b
ps

)

New Reno
Vegas
Westwood+
Fair share

Figure 22. C1 Goodput vs. number of traversed hops in the
presence of Vegas cross traffic.

 9

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

1 2 3 4 5 6 7 8 9 10
No. of traversed hops

To
ta

l G
oo

dp
ut

 (b
ps

)

New Reno
Vegas
Westwood+

Figure 23. Total Goodput vs. number of traversed hops in the
presence of Vegas cross traffic.

Scenario 4. All traffic sources are controlled by the same control
algorithm. This is a homogeneous scenario aiming at evaluating
New Reno, Westwood+ and Vegas TCP in absolute terms.
Fig. 24 shows that New Reno and Westwood+ provide roughly
the same goodput, which monotonically decreases when the
number of traversed hops increases, whereas Vegas achieves the
highest goodputs when the number of traversed hops is larger than
3 because the Vegas cross traffic is not efficient as Reno or
Westwood+. In fact, Fig. 25 shows that the total goodput obtained
by using Vegas TCP scenario is much smaller than the total
goodputs obtained by New Reno or Westwood+, which means
that the Vegas cross traffic do not use the share of link capacity
left unused by the C1 connection.

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 2 3 4 5 6 7 8 9 10
No. of traversed hops

G
oo

dp
ut

 o
f t

he
 C

1
co

nn
ec

tio
n

(b
ps

)

New Reno
Vegas
Westwood+
Fair share

Figure 24. C1 Goodput vs. number of traversed hops in the
presence of homogeneous cross-traffic.

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

1 2 3 4 5 6 7 8 9 10
No. of traversed hops

To
ta

l G
oo

dp
ut

 (b
ps

)

New Reno
Vegas
Westwood+

Figure 25. Total Goodput vs. number of traversed hops in the

presence of homogeneous cross-traffic.

To summarize, results of this section have shown the inter-
protocol friendliness of New Reno and Westwood+ towards each
other that is mainly due to the fact that they employs the same
probing mechanism. On the other hand, the rtt-based congestion
detection mechanism of Vegas TCP turns out an unfriendly
behavior of New Reno or Westwood+ towards Vegas, which is
not able to fully utilize the network bandwidth. For these reasons,
we will not consider Vegas in the sequel of the paper.

3.4 Wireless scenarios
This section aims at investigating the behavior of TCP over
wireless links that are affected by losses not due to congestion.
This case is particularly interesting since it is well known that
protocols that react to losses by multiplicatively decreasing the
control windows do not provide efficient utilization of lossy
channels. In this scenario we consider Westwood+, New Reno and
also TCP SACK to investigate the efficiency of SACK to recover
from sporadic random losses. Since TCP SACK by default does
not use delayed ACK, we consider Westwood+ and New Reno
with delayed ACK (default case) and without delayed ACK in
order to get a fair comparison.

3.4.1 Terrestrial scenario
The first scenario we consider is the hybrid wired/wireless
topology shown in Fig. 26. The TCP1 connection goes through a
wired path terminating with a last hop wireless link. The wireless
last hop models a mobile user accessing the Internet using a radio
link as in the case of a cellular telephone system. The one way
delay of the TCP1 connection is 125ms with 20ms delay on the
wireless link, which is a 2Mbps link [2]. RTTs of the 5 cross
traffic connections and of the 10 New Reno backward traffic
connections are uniformly spread in the intervals [66ms,250ms]
and [46ms,250ms], respectively. We consider a wireless link
affected by bursty segment losses in both directions. We use the
Gilbert two state Markov chain to model the loss process [10]. In
particular, we assume a segment loss probability equal to 0, when
the channel is in the Good state, and equal to 0.1 when the
channel is in the Bad state. The permanence time in the Good
state is assumed deterministic and equal to 1s whereas the
permanence time in the Bad state is assumed also deterministic
but this time we consider values ranging from 0.1ms to 100 ms.
When the permanence time in a state elapses, the state can transit
to a Good or Bad state with a probability p=0.5. For each
considered case, we run 10 simulations by varying the seed of the
random loss process. For each value of the BAD state duration we
report the maximum, minimum and average goodputs.

Figure 26. Mixed wired/wireless scenario.

5 TCP
sources

10 TCP
sources

Cross Traffic

Reverse Traffic

5 TCP
Sinks

10 TCP
Sinks

TCP1
source

Wireless link

TCP1
sink

 10

In order to analyze only the impact of bursty losses on the TCP
behavior, we have first turned off both the cross and reverse
traffic sources. This simple scenario is particularly useful to
investigate the effectiveness of the adaptive decrease paradigm
when losses not due to congestion are experienced by the TCP.
Fig. 27 (a) shows the goodput of TCP1 Westwood+ and New
Reno, when the delayed ACK is enabled (default case), as a
function of the duration of the BAD state. It turns out that
Westwood+ improves the goodput for a large set of channel
conditions. In particular, when the delayed ACK option is
enabled, Westwood+ increases the utilization of the wireless link
from 70% to 230% with respect to New Reno. Fig. 27 (b) shows
the goodput of Westwood+, New Reno and TCP SACK when the
delayed ACK is disabled (default case for TCP SACK). In this
case SACK TCP provides a goodput similar to that of New Reno,
whereas Westwood+ improves the link utilization with respect to
SACK and New Reno from 34% up to 177%. The reason is that
the adaptive setting of cwnd and ssthresh performed by
Westwood+ takes into account the bandwidth used at time of
congestion, so that the TCP sender does not lose ground when in
the presence of losses not due to congestion. To get a further
insight into this feature, Figs. 28 and 29 report the cwnd dynamics
of Westwood+ and New Reno, respectively, obtained when the
duration of the BAD state is 0.01s and the delayed ACK is
enabled. In this case, Westwood+ TCP provides a ssthresh
approaching the bandwidth-delay product of 40 packets, whereas
New Reno TCP provides a ssthresh that is smaller than one fourth
the bandwidth-delay product.

0.0E+00
2.0E+05
4.0E+05
6.0E+05
8.0E+05
1.0E+06
1.2E+06
1.4E+06
1.6E+06
1.8E+06
2.0E+06

0.0001 0.001 0.01 0.1
Duration of the BAD state (s)

G
oo

dp
ut

 (b
ps

)

Westwood+, DACK enabled

New Reno, DACK enabled

(a)

0.0E+00
2.0E+05
4.0E+05
6.0E+05
8.0E+05
1.0E+06
1.2E+06
1.4E+06
1.6E+06
1.8E+06
2.0E+06

0.0001 0.001 0.01 0.1
Duration of the BAD state (s)

G
oo

dp
ut

 (b
ps

)

Westwood+, DACK disabled

New Reno, DACK disabled

SACK

(b)

Figure 27. Goodput of the TCP1 connection without reverse
traffic: (a) DACK enabled; (b) DACK disabled.

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800 900 1000
s

Se
gm

en
ts

cwnd
ssthresh

Figure 28. Cwnd and ssthresh of Westwood+ when the
duration of the BAD state is 0.01s.

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800 900 1000
s

Se
gm

en
ts

cwnd
ssthresh

Figure 29. Cwnd and ssthresh of New Reno when the duration
of the BAD state is 0.01s.

One further point valuable of investigation is when Westwood+
shares the wired portion of the network with several TCP flows on
the forward and backward paths. For that purpose, we turn on the
cross and reverse traffic in Fig. 26 and we measure the goodput of
the TCP1 connections for various values of the BAD state
duration. Fig. 30 shows that the delayed ACK option plays a
major role in this scenario. In fact, protocols that do not employ
the delayed ACK option provides goodputs that are roughly two
times larger than those obtained when the delayed ACK option is
enabled. The reason is that the delayed ACK option slows down
the TCP probing phase. In these scenarios Westwood+ TCP
(DACK disabled) still improves the goodput with respect to New
Reno (DACK disabled) and SACK TCP, but the improvement is
now only up to roughly 20%. The reason is that in this case the
TCP1 connection loses bandwidth in favor of the cross traffic that,
being wired, is not penalized by losses not due to congestion.

 11

100000

200000

300000

400000

500000

600000

700000

800000

900000

0.0001 0.001 0.01 0.1
Duration of the BAD state (s)

G
oo

dp
ut

 (b
ps

)

Westwood+, DACK disabled
New Reno, DACK disabled
SACK
Westwood+, DACK enabled
New Reno, DACK enabled

Figure 30. Goodput of the TCP1 connection in presence of
cross and reverse traffic.

3.4.2 Satellite scenario
This section investigates the performances of New Reno and
Westwood+ over a large leaky pipe such as in the case of a
satellite scenario. For that purpose we consider the scenario in
Fig. 31 where a 10mbps bottleneck link has a one-way delay equal
to 275ms, which corresponds to a GEO satellite connection [32].

Figure 31. GEO satellite scenario.

We consider 20 TCP forward connections in the presence of
reverse traffic contributed by 10 long-lived New Reno
connections. RTTs of the forward connections are equal to 590ms.
Simulations last 1000s. We assume the same error model used in
the previous sub-section except for the BAD state duration that
has been increased up to 1s. The bottleneck link experiences
segment losses in both directions. Fig. 32 shows the goodput
provided by the two considered TCP control algorithms. When
delayed ACK is enabled, Westwood+ TCP provides a goodput
improvement with respect to New Reno TCP that ranges from
20% to 160%, whereas, when the delayed ACK is disabled, the
improvements of Westwood+ with respect to SACK TCP and
New Reno are up to 80%. Again, the reason is that Westwood+
adaptively reduces the cwnd and sstresh by taking into account an
estimate of the available bandwidth: this mitigates the impact of
random losses not due to congestion that provokes multiplicative
reductions of New Reno control windows.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

10000000

0.0001 0.001 0.01 0.1 1
Duration of the BAD state (s)

To
ta

l G
oo

dp
ut

 (b
ps

)

Westwood+, DACK disabled
Westwood+, DACK enabled
SACK
New Reno, DACK disabled
New Reno, DACK enabled

Figure 32. Goodput over the GEO satellite scenario.

4. LIVE MEASUREMENTS
When a new protocol is proposed, it is necessary to collect a large
set of simulation and experimental results in order to assess its
validity and the advantages of its deployment in the real Internet
[29]. In this section we test Linux implementations of New Reno
and Westwood+ [44] over the real Internet. More than 4000 files,
with different sizes, have been uploaded via ftp from a host at the
Laboratory of Communication and Control at Politecnico di Bari
(South of Italy) to three remote servers, which are located at
Parma (North of Italy), Uppsala University (Sweden) and
University of California, Los Angeles (Ucla). For each upload we
have measured the goodput, the number of retransmitted
segments, and important variables such as cwnd, sshtresh, RTT
and bandwidth estimate. Each measurements session collects data
of many file uploads, which are alternatively executed by using
Westwood+ or New Reno. Table 2 summarizes the main
characteristics of the sessions from Bari to the FTP server at
UCLA, whereas Fig. 33 shows the average goodputs achieved
during data transfer.

Table 2: FTP uploads from Politecnico of Bari, Italy to UCLA,
Los Angeles.
date No. of Uploads Size of uploaded

files (MBytes)
Feb,21 2003 117 32
Feb,26 2003 197 3.2
Feb,28 2003 702 3.2
Mar,14 2003 54 32
Mar,19 2003 79 32
Mar,21 2003 47 32

The average goodput of a measurements session is obtained by
averaging the goodputs of the session uploads. It turns out that
Westwood+ TCP provides goodput improvements ranging from
23% to 53% with respect to New Reno. It is also worth noting that
improvements provided by Westwood+ TCP are not due to a more
aggressive behaviour, since Fig. 34 shows that Westwood+ and
New Reno TCP have similar retransmission ratios.

Table 3 summarizes the characteristics of the measurement
sessions from Bari to the server at the Uppsala University. Figs.
35 and 36 show the average goodputs and the average

20 TCP
senders

20 TCP
sinks

10 TCP
sinks

10 TCP
senders

 12

retransmission ratio in this case. Westwood+ TCP provides
goodput improvements ranging from 4% to 40% with respect to
New Reno with similar retransmission ratios.

Table 3: FTP from Politecnico of Bari, Italy to Uppsala
University (Sweden)
date No. of Uploads Size of uploaded

files (MBytes)
Dec,14 2002 253 32
Dec,17 2002 200 3.2
Jan,10 2003 100 3.2
Jan,12 2003 100 3.2
Jan,13 2003 150 32
Jan,17 2003 1000 3.2
Feb,3 2003 278 32
Feb,7 2003 500 32

Table 4 summarizes the characteristics of the measurement
sessions from Bari to the FTP server located at Parma. Figs. 37
and 38 show the goodputs and the retransmission ratios that have
been measured during these data transfer. In this case the
connection has a national extension and Westwood+ and New
Reno TCP provide similar goodputs.

Table 4: FTP uploads towards the server located at Parma
(Italy)
date No. of Uploads Size of uploaded

files (MBytes)
Mar,26 2003 100 32
Mar,27 2003 98 3.2
Mar,28 2003 1000 3.2
Apr,4 2003 390 32
Apr,7 2003 200 3.2
Apr,9 2003 200 3.2
Apr,11 2003 1000 3.2

Figure 33. Average goodput during ftp to Los Angeles.

Figure 34. Retransmission ratio during ftp to UCLA.

Figure 35. Average goodput during ftp to Uppsala.

Figure 36. Retransmission ratio during ftp to Uppsala.

0
5

10
15
20
25
30
35
40
45
50

21 Feb 2003
32MB

26 Feb 2003
3.2MB

28 Feb 2003
3.2 MB

14 Mar 2003
32MB

19 Mar 2003
32 MB

21 Mar 2003
32 MB

A
ve

ra
ge

 G
oo

dp
ut

 (K
B

yt
es

/s
)

New Reno
Westwood+

0

2

4

6

8

10

12

21 Feb 2003
32MB

26 Feb 2003
3.2MB

28 Feb 2003
3.2MB

14 Mar 2003
32MB

19 Mar 2003
32MB

21 Mar 2003
32MB

R
et

ra
ns

m
is

si
on

 ra
tio

 (%
)

New Reno
Westwood+

0

50

100

150

200

250

14 Dec
2002

32 MB

17 Dec
2002

3.2MB

10 Jan
2003

3.2MB

12 Jan
2003

3.2MB
13 Jan

2003
32MB

17 Jan
2003

3.2MB
3 Feb
2003

32MB

7 Feb
2003

32MB

New Reno
Westwood+

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

17 Dec
2002

3.2MB

10 Jan
2003

3.2MB

12 Jan
2003

3.2 MB

13 Jan
2003

32MB
17 Jan

2003
3.2MB

3 Feb 1003
32MB

7 Feb 2003
32MB

New Reno
Westwood+

R
et

ra
ns

m
is

si
on

 ra
tio

 (%
)

A
ve

ra
ge

 G
oo

dp
ut

 (K
B

yt
es

/s
)

 13

Figure 37. Average goodput during ftp to Parma.

Figure 38. Retransmission ratio during ftp to Parma.

To conclude this section, it is worth to take a look at the pipe size
of the considered connections. The minimum measured RTT has
been equal to 190ms, 70ms and 50 ms during transfers to Ucla,
Uppsala and Parma, respectively. By computing the average
Westwood+ TCP goodput times the minimum RTT, we get the
pipe sizes reported in Table 5. This Table shows that when the
pipe size is larger than few MSS, Westwood+ improves the
goodput with respect to Reno up to 53%. We were not able to
execute measurements over larger bandwidth-delay paths where
we expect that Westwood+ will provide larger goodput
improvements.

Table 5: Performance analysis (MSS=1500Bytes)
Server Goodput Improvement Pipe size (MSS)
UCLA 23% ÷ 53% 3-6
Uppsala 4% ÷ 40% 1-10
Parma −9% ÷ 10% 0.5-5

5. Conclusions
A detailed evaluation and comparison of Westwood+, New Reno
and Vegas TCP congestion control algorithms has been developed
through this paper using the ns-2 simulator. Results have shown:
(1) the inter-protocol friendliness of Westwood+ and New Reno
whereas Vegas is not able to grab its bandwidth share when
coexisting with New Reno or Westwood+; (2) the increased intra-
protocol fairness in bandwidth allocation of Westwood+ TCP
w.r.t. New Reno; (3) the improved utilization of lossy links

provided by Westwood+ wrt New Reno. Finally, measurements
collected over the real Internet have shown that Westwood+
improve the goodput with respect to New Reno TCP when the
pipe size is larger than few segments.

6. Acknowledgments
We thank anonymous reviewers and John Wroclawski who
allowed us to greatly improve the quality of the paper.

7. References
[1] Jacobson, V. Congestion avoidance and control, in Proceedings of

ACM SIGCOMM '88 (Stanford CA, August 1988), 314-329.
[2] Krishnan, R., Allman, M., Partridge, C., and Sterbenz, J. P. G.

Explicit Transport Error Notification (ETEN) for Error Prone
Wireless and Satellite Networks, BBN Technical Report No. 8333,
March 22, 2002.

[3] Floyd, S., Henderson, T. New Reno Modification to TCP's Fast
Recovery, RFC 2582, April 1999.

[4] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A. TCP Selective
Acknowledgement Options, RFC 2018, April 1996.

[5] Allman, M., Paxson, V., Stevens, W. R. TCP congestion control, RFC
2581, April 1999.

[6] Dah-Ming Chiu, Jain, R. Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks. Computer
Networks and ISDN Systems, 17(1), (1989), 1-14.

[7] Padhye, J., Firoiu, V., Towsley, D., Kurose, J. Modeling TCP
Throughput: A Simple Model and its Empirical Validation, in
Proceedings of ACM Sigcomm 1998, (Vancouver BC, Canada,
September 1998), 303-314.

[8] Morris, R. TCP behavior with Many Flows, in Proceedings of IEEE
International Conference on Network Protocols, (Atlanta, Georgia,
October 1997), 205-211.

[9] Brakmo, L. S., O’Malley, S.W., and Peterson, L. TCP Vegas: End-to-
end congestion avoidance on a global Internet. IEEE Journal on
Selected Areas in Communications (JSAC), 13(8), (1995), 1465-1480.

[10] C. Barakat, E. Altman, Bandwidth tradeoff between TCP and link-
level FEC, Computer Networks, 39, (2002), pp. 133-150.

[11]Mo, J., La, R. J., Anantharam, V., Walrand, J. Analysis and
comparison of TCP Reno and Vegas, in Proceedings of IEEE Infocom
1999, (New York NY, March 1999), 1556-1563.

[12] Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M., Wang, R. TCP
Westwood: End-to-End Bandwidth Estimation for Efficient Transport
over Wired and Wireless Networks, in Proceedings of ACM
Mobicom 2001, (Rome, Italy, July 2001).

[13] Mascolo, S., and Grieco, L. A., Additive increase early adaptive
decrease mechanism for TCP congestion control. IEEE ICT 2003,
Papeete, French Polynesia, February 2003..

[14] Grieco, L. A., and Mascolo, S., Westwood TCP and easy RED to
improve Fairness in High Speed Networks, in Proceedings of
IFIP/IEEE Seventh International Workshop on Protocols For High-
Speed Networks, PfHSN02, (Berlin, Germany, April, 2002).

[15] moAstr && , K. J. and B. Wittenmark (1997). Computer controlled
systems, Prentice Hall, Englewood Cliffs, N. J, 1995.

[16]Ns-2 network simulator (ver 2). LBL, URL: http://www-
mash.cs.berkeley.edu/ns.

[17] Jain, R. The art of computer systems performance analysis, John
Wiley and Sons, 1991.

[18] Clark, D. The design philosophy of the DARPA Internet protocols, in
Proceedings of ACM Sigcomm’88 (Stanford CA, August 1988), 106-
114.

[19] Floyd, S., Fall, K. Promoting the use of end-to-end congestion control
in the Internet. IEEE/ACM Transactions on Networking, 7(4), (1999),
458-72.

[20] Mascolo, S. Congestion control in high-speed communication
networks. Automatica, Special Issue on Control Methods for
Communication Networks, vol. 35, no. 12, Dec. 1999, pp. 1921-35.

[21] Lakshman, T.V. and Madhow, U. The Performance of TCP/IP for

0
20
40
60
80

100
120
140
160

26 Mar
2003

32MB
27 Mar

2003
3.2MB

28 Mar
2003

3.2MB
4 Apr 2003

32MB
7 Apr 2003

3.2MB
9 Apr 2003

3.2MB
11 Apr

2003
3.2MB

A
ve

ra
ge

 G
oo

dp
ut

 (K
B

yt
es

/s
)

New Reno
Westwood+

0

2

4

6

8

10

12

14

26 Mar
2003

32MB
27 Mar

2003
3.2MB

28 Mar
2003

3.2MB
4 Apr 2003

32MB
7 Apr 2003

3.2MB
9 Apr 2003

3.2MB
11 Apr

2003
3.2MB

New Reno
Westwood+

R
et

ra
ns

m
is

si
on

 ra
tio

 (%
)

 14

Networks with High Bandwidth-Delay Products and Random Loss.
IEEE/ACM Transactions on Networking, 5(3), (1997).

[22] Stevens, W. TCP/IP illustrated, Addison Wesley, Reading, MA, 1994.
[23] Keshav, S. A Control-theoretic Approach to Flow Control, in

Proceedings of ACM Sigcomm 1991, (Zurich, Switzerland,
September 1991), 3-15.

[24] Hoe, J. C. Improving the Start-up Behavior of a Congestion Control
Scheme for TCP, in Proceedings of ACM Sigcomm'96, (Palo Alto,
CA, August 1996), 270-280

[25] Allman, M. and Paxson, V. On Estimating End-to-End Network Path
Properties, in Proceedings of ACM Sigcomm 1999. (Cambridge,
Massachusetts, August 1999), 263-276.

[26] Lai, K. and Baker, M. Measuring Link Bandwidths Using a
Deterministic Model of Packet Delay, in Proceedings of ACM
Sigcomm 2000, (Stockholm, Sweden, August 2000), 283-294.

[27] Padhye, J., and Floyd, S. On inferring TCP behavior, in Proceedings
of ACM Sigcomm 2001. (San Diego CA, August 2001).

[28] Kelly, F. Mathematical modeling of the Internet, in Proceedings of the
Fourth International Congress on Industrial and Applied Mathematics,
(July 1999).

[29] Floyd, S., Paxson, V. Difficulties in simulating the Internet,
IEEE/ACM Trans. Networking, 9(4), (2001), 392-403.

[30] Rizzo, L. Dummynet: a simple approach to the evaluation of network
protocols, ACM Computer Communication Review, 27(1), (1997),
31-41.

[31] Li, S. Q., and Hwang, C. Link Capacity Allocation and Network
Control by Filtered Input Rate in High speed Networks, IEEE/ACM
Transaction on Networking, 3(1), (1995), 10-25.

[32] Akyildiz, I., Morabito, G., and Palazzo S. TCP-Peach: A new
Congegestion Control Scheme for Satellite IP Networks. IEEE/ACM
Transaction on Networking, 6, (2001), 307-321.

[33] Balakrishnan, H.; Padmanabhan, V.N.; Seshan, S.; Katz, R.H. A
comparison of mechanisms for improving TCP performance over
wireless links, IEEE/ACM Transactions on Networking, 5(6), (1997),
756-769.

[34] Chaskar, H.M.; Lakshman, T.V.; and Madhow, U. TCP Over Wireless
with Link Level Error Control: Analysis and Design Methodology,
IEEE/ACM Transactions on Networking, 7(5), (1999), 605-615.

[35] Allman, M., Falk, A. On the Effective Evaluation of TCP, ACM
Computer Communication Review, 29(5), October 1999.

[36] Jain, M., Dovrolis, C. End to End Available Bandwidth: Measurement
Methodology, Dynamics, and Relation with TCP Throughput, in
Proceedings of ACM Sigcomm 2002.

[37] Melander, B., Bjorkman, M. and Gunningberg, P. A New End-to-End
Probing and Analysis Method for Estimating Bandwidth Bottlenecks,
in Proceedings of Global Internet Symposium, 2000.

[38] ns-2 Westwood+ implementation, available at http://www-
ictserv.poliba.it/mascolo/tcp%20westwood/modules.htm

 [39] Fast AQM Scalable TCP, http://netlab.caltech.edu/FAST/
[40] Communication to the e2e mailing list, from: Steven Low

Wednesday, August 06, 2003 8:04 AM Subject: Re: [e2e] Question
about FAST TCP.

[41] J.C. Mogul, “Observing TCP dynamics in real networks,” in
Proceedings of ACM Sigcomm 1992, 305-317.

[42] Grieco, L. A. , and Mascolo, S., End-to-End Bandwidth Estimation
for Congestion Control in Packet Networks. Second International
Workshop, QoS-IP 2003, Milano, Italy, February 2003.

[43] Allman, M., Floyd, S., and Partridge, C. Increasing TCP's Initial
Window, PFC 2414.

[44] Linux Implementation of Westwood+ TCP, available at
http://buffer.antifork.org/westwood/westwood.html.

