
Page replacement in Linux 2.4 memory management

Rik van Riel
Conectiva Inc.

riel@conectiva.com.br, http://www.surriel.com/

Abstract

While the virtual memory management in Linux 2.2
has decent performance for many workloads, it suf-
fers from a number of problems. The first part of
this paper contains a description of how the Linux
2.2 VMM works and an analysis of why it has bad
behaviour in some situations.

The way in which a lot of this behaviour has been
fixed in the Linux 2.4 kernel is described in the sec-
ond part of the paper. Due to Linux 2.4 being in
a code freeze period while these improvements were
implemented, only known-good solutions have been
integrated. A lot of the ideas used are derived from
principles used in other operating systems, mostly
because we have certainty that they work and a
good understanding of why, making them suitable
for integration into the Linux codebase during a
code freeze.

1 Linux 2.2 memory management

The memory management in the Linux 2.2 kernel
seems to be focussed on simplicity and low overhead.
While this works pretty well in practice for most
systems, it has some weak points left and simply
falls apart under some scenarios.

Memory in Linux is unified, that is all the physical
memory is on the same free list and can be allocated
to any of the following memory pools on demand.
Most of these pools can grow and shrink on demand.
Typically most of a system’s memory will be allo-
cated to the data pages of processes and the page
and buffer caches.

• The slab cache: this is the kernel’s dynami-
cally allocated heap storage. This memory is

unswappable, but once all objects within one
(usually page-sized) area are unused, that area
can be reclaimed.

• The page cache: this cache is used to cache
file data for both mmap() and read() and is
indexed by (inode, index) pairs. No dirty
data exists in this cache; whenever a program
writes to a page, the dirty data is copied to
the buffer cache, from where the data is writ-
ten back to disk.

• The buffer cache: this cache is indexed by
(block device, block number) tuples and is
used to cache raw disk devices, inodes, direc-
tories and other filesystem metadata. It is also
used to perform disk IO on behalf of the page
cache and the other caches. For disk reads the
pagecache bypasses this cache and for network
filesystems it isn’t used at all.

• The inode cache: this cache resides in the slab
cache and contains information about cached
files in the system. Linux 2.2 cannot shrink
this cache, but because of its limited size it
does need to reclaim individual entries.

• The dentry cache: this cache contains direc-
tory and name information in a filesystem-
independent way and is used to lookup files
and directories. This cache is dynamically
grown and shrunk on demand.

• SYSV shared memory: the memory pool con-
taining the SYSV shared memory segments is
managed pretty much like the page cache, but
has its own infrastructure for doing things.

• Process mapped virtual memory: this mem-
ory is administrated in the process page ta-
bles. Processes can have page cache or SYSV
shared memory segments mapped, in which
case those pages are managed in both the page
tables and the data structures used for respec-
tively the page cache or the shared memory
code.



1.1 Linux 2.2 page replacement

The page replacement of Linux 2.2 works as follows.
When free memory drops below a certain threshold,
the pageout daemon (kswapd) is woken up. The pa-
geout daemon should usually be able to keep enough
free memory, but if it isn’t, user programs will end
up calling the pageout code itself.

The main pageout loop is in the function
try to free pages, which starts by freeing unused
slabs from the kernel memory pool. After that, it
calls the following functions in a loop, asking each
of them to scan a small part of their part of memory
until enough memory has been freed.

• shrink mmap is a classical clock algorithm,
which loops over all physical pages, clearing
referenced bits, queueing old dirty pages pages
for IO and freeing old clean pages. The main
disadvantage it has compared to a clock algo-
rithm, however, is that it isn’t able to free
pages which are in use by a program or a
shared memory segment. Those pages need
to be unmapped by swap out first.

• shm swap scans the SYSV shared memory
segments, swapping out those pages that
haven’t been referenced recently and which
aren’t mapped into any process.

• swap out scans the virtual memory of all
processes in the system, unmapping pages
which haven’t been referenced recently, start-
ing swapout IO and placing those pages in the
page cache.

• shrink dcache memory recaims entries from
the VFS name cache. This is not directly
reusable memory, but as soon as a whole page
of these entries gets unused we can reclaim
that page.

Some balancing between these memory freeing func-
tion is achieved by calling them in a loop, starting
of by asking each of these functions to scan a little
bit of their memory, as each of these funnctions ac-
cepts a priority argument which tells them how big
a percentage of their memory to scan. If not enough
memory is freed in the first loop, the priority is in-
creased and the functions are called again. The idea
behind this scheme is that when one memory pool is
heavily used, it will not give up its resources lightly

and we’ll automatically fall through to one of the
other memory pools. However, this scheme relies on
each of the memory pools to react in a similar way
to the priority argument under different load con-
ditions. This doesn’t work out in practice because
the memory pools just have fundamentally different
properties to begin with.

1.2 Problems with the Linux 2.2 page
replacement

• Balancing between evicting pages from the
file cache, evicting unused process pages and
evicting pages from shm segments. If memory
pressure is ”just right” shrink mmap is always
successful in freeing cache pages and a process
which has been idle for a day is still in mem-
ory. This can even happen on a system with
a fairly busy filesystem cache, but only with
the right phase of moon.

• Simple NRU[Note] replacement cannot accu-
rately identify the working set versus inciden-
tally accessed pages and can lead to extra page
faults. This doesn’t hurt noticably for most
workloads, but it makes a big difference in
some workloads and can be fixed easily, mostly
since the LFU replacement used in older Linux
kernels is known to work.

• Due to the simple clock algorithm in
shrink mmap, sometimes clean, accessed
pages can get evicted before dirty, old pages.
With a relatively small file cache that mostly
consists of dirty data, eg unpacking a tarball,
it is possible for the dirty pages to evict the
(clean) metadata buffers that are needed to
write the dirty data to disk. A few other
corner cases with amusing variations on this
theme are bound to exist.

• The system reacts badly to variable VM load
or to load spikes after a period of no VM activ-
ity. Since kswapd, the pageout daemon, only
scans when the system is low on memory, the
system can end up in a state where some pages
have referenced bits from the last 5 seconds,
while other pages have referenced bits from
20 minutes ago. This means that on a load
spike the system has no clue which are the
right pages to evict from memory, this can
lead to a swapping storm, where the wrong
pages are evicted and almost immediately af-



terwards faulted back in, leading to the page-
out of another random page, etc...

• Under very heavy loads, NRU replacement of
pages simply doesn’t cut it. More careful and
better balanced pageout eviction and flushing
is called for. With the fragility of the Linux
2.2 pageout framework this goal doesn’t really
seem achievable.

The facts that shrink mmap is a simple clock al-
gorithm and relies on other functions to make
process-mapped pages freeable makes it fairly un-
predictable. Add to that the balancing loop in
try to free pages and you get a VM subsystem
which is extremely sensitive to minute changes in
the code and a fragile beast at its best when it comes
to maintenance or (shudder) tweaking.

2 Changes in Linux 2.4

For Linux 2.4 a substantial development effort has
gone into things like making the VM subsystem fully
fine-grained for SMP systems and supporting ma-
chines with more than 1GB of RAM. Changes to
the pageout code were done only in the last phase
of development and are, because of that, somewhat
conservative in nature and only employ known-good
methods to deal with the problems that happened
in the page replacement of the Linux 2.2 kernel. Be-
fore we get to the page replacement changes, how-
ever, first a short overview of the other changes in
the 2.4 VM:

• More fine-grained SMP locking. The scalabil-
ity of the VM subsystem has improved a lot
for workloads where multiple CPUs are read-
ing or writing the same file simultaneously;
for example web or ftp server workloads. This
has no real influence on the page replacement
code.

• Unification of the buffer cache and the page
cache. While in Linux 2.2 the page cache used
the buffer cache to write back its data, need-
ing an extra copy of the data and doubling
memory requirements for some write loads,
in Linux 2.4 dirty page cache pages are sim-
ply added in both the buffer and the page
cache. The system does disk IO directly to

and from the page cache page. That the buffer
cache is still maintained separately for filesys-
tem metadata and the caching of raw block
devices. Note that the cache was already uni-
fied for reads in Linux 2.2, Linux 2.4 just com-
pletes the unification.

• Support for systems with up to 64GB of RAM
(on x86). The Linux kernel previously had
all physical memory directly mapped in the
kernel’s virtual address space, which limited
the amount of supported memory to slightly
under 1GB. For Linux 2.4 the kernel also
supports additional memory (so called ”high
memory” or highmem), which can not be used
for kernel data structures but only for page
cache and user process memory. To do IO on
these pages they are temporarily mapped into
kernel virtual memory and the data is copied
to or from a bounce buffer in ”low memory”.

At the same time the memory zone for ISA
DMA (0 - 16 MB physical address range) has
also been split out into a separate page zone.
This means larger x86 systems end up with 3
memory zones, which all need their free mem-
ory balanced so we can continue allocating
kernel data structures and ISA DMA buffers.
The memory zones logic is generalised enough
to also work for NUMA systems.

• The SYSV shared memory code has been re-
moved and replaced with a simple memory
filesystem which uses the page cache for all its
functions. It supports both POSIX SHM and
SYSV SHM semantics and can also be used as
a swappable memory filesystem (tmpfs).

Since the changes to the page replacement code took
place after all these changes and in the (one and a
half year long) code freeze period of the Linux 2.4
kernel, the changes have been kept fairly conserva-
tive. On the other hand, we have tried to fix as
many of the Linux 2.2 page replacement problems
as possible. Here is a short overview of the page
replacement changes: they’ll be described in more
detail below.

• Page aging, which was present in the Linux 1.2
and 2.0 kernels and in FreeBSD has been rein-
troduced into the VM. However, a few small
changes have been made to avoid some arti-
facts of virtual page based aging.



• To avoid the eviction of ”wrong” pages due to
interactions from page aging and page flush-
ing, the page aging and flushing has been sep-
arated. There are active and inactive page
lists.

• Page flushing has been optimised to avoid too
much interference by writeout IO on the more
time-critical disk read IO.

• Controlled background page aging during pe-
riods of little or no VM activity in order to
keep the system in a state where it can easily
deal with load spikes.

• Streaming IO is detected; we do early evic-
tion on the pages that have already been used
and reward the IO stream with more agressive
readahead.

3 Linux 2.4 page replacement
changes in detail

The development of the page replacement changes
in Linux 2.4 has been influenced by two main fac-
tors. Firstly the bad behaviours of Linux 2.2 page
replacement had to be fixed, using only known-good
strategies because the development of Linux 2.4 had
already entered the ”code freeze” state. Secondly
the page replacement had to be more predictable
and easier to understand than Linux 2.2 because
tuning the page replacement in Linux 2.2 was de-
serving of the proverbial label ”subtle and quick to
upset”. This means that only VM ideas that are well
understood and have little interactions with the rest
of the system were integrated. Lots of ideas were
taken from other freely available operating systems
and literature.

3.1 Page aging

Page aging was the first easy step in making the
bad border-case behaviour from Linux 2.2 go away,
it works reasonably well in Linux 1.2, Linux 2.0 and
FreeBSD. Page aging allows us to make a much finer
distinction between pages we want to keep in mem-
ory and pages we want to swap out than the NRU
aging in Linux 2.2.

Page aging in these OSes works as follows: for each
physical page we keep a counter (called age in Linux,

or act count in FreeBSD) that indicates how desir-
able it is to keep this page in memory. When scan-
ning through memory for pages to evict, we increase
the page age (adding a constant) whenever we find
that the page was accessed and we decrease the page
age (substracting a constant) whenever we find that
the page wasn’t accessed. When the page age (or
act count) reaches zero, the page is a candidate for
eviction.

However, in some situations the LFU[Note]
page aging of Linux 2.0 is known to have too
much CPU overhead and adjust to changes
in system load too slowly. Furthermore,
research[Smaragdis, Kaplan, Wilson] has shown
that recency of access is a more important criteria
for page replacement than frequency.

These two problems are solved by doing exponen-
tial decline of the page age (divide by two instead
of substracting a constant) whenever we find a page
that wasn’t accessed, resulting in page replacement
which is closer to LRU[Note] than LFU. This re-
duces the CPU overhead of page aging drastically
in some cases; however, no noticable change in swap
behaviour has been observed.

Another artifact comes from the virtual address
scanning. In Linux 1.2 and 2.0 the system reduces
the page age of a page whenever it sees that the page
hasn’t been accessed from the page table which it
is currently scanning, completely ignoring the fact
that the page could have been accessed from other
page tables. This can put a severe penalty on heav-
ily shared pages, for example the C library.

This problem is fixed by simply not doing ”down-
wards” aging from the virtual page scans, but only
from the physical-page based scanning of the active
list. If we encounter pages which are not referenced,
present in the page tables but not on the active list,
we simply follow the swapout path to add this page
to the swap cache and the active list so we’ll be able
to lower the page age of this page and swap it out
as soon as the page age reaches zero.

3.2 Multiple page lists

The bad interactions between page aging and page
flushing, where referenced clean pages were freed be-
fore old dirty pages, is fixed by keeping the pages
which are candidates for eviction separated from the



pages we want to keep in memory (page age zero
vs. nonzero). We separate the pages out by putting
them on various page lists and having separate al-
gorithms deal with each list.

Pages which are not (yet) candidate for eviction are
in process page tables, on the active list or both.
Page aging as described above happens on these
pages, with the function refill inactive() balancing
between scanning the page tables and scanning the
active list.

When the page age on a page reaches zero, due to a
combination of pageout scanning and the page not
being actively used, the page is moved to the inac-
tive dirty list. Pages on this list are not mapped
in the page tables of any process and are, or can
become, reclaimable. Pages on this list are handled
by the function page launder(), which flushes the
dirty pages to disk and moves the clean pages to
the inactive clean list.

Unlike the active and inactive dirty lists, the inac-
tive clean list isn’t global but per memory zone. The
pages on these lists can be immediately reused by
the page allocation code and count as free pages.
These pages can also still be faulted back into where
it came from, since the data is still there. In BSD
this would be called the ”cache” queue.

3.3 Dynamically sized inactive list

Since we do page aging to select which pages to
evict, having a very large statically sized inactive
list (like FreeBSD has) doesn’t seem to make much
sense. In fact, it would cancel out some of the effects
of doing the page aging in the first place: why spend
much effort selecting which pages to evict[Dillon]
when you keep as much as 33% of your swappable
pages on the inactive list? Why do careful page ag-
ing when 33% of your pages end up as candidates for
eviction at the same priority and you’ve effectively
undone the aging for those 33% of pages which are
candidates for eviction?

On the other hand, having lots of inactive pages to
choose from when doing page eviction means you
have more chances of avoiding writeout IO or doing
better IO clustering. It also gives you more of a
”buffer” to deal with allocations due to page faults,
etc.

Both a large and a small target size for the inac-
tive page list have their benefits. In Linux 2.4 we
have chosen for a middle ground by letting the sys-
tem dynamically vary the size of the inactive list
depending on VM activity, with an artificial upper
limit to make sure the system always preserves some
aging information.

Linux 2.4 keeps a floating average of the amount of
pages evicted per second and sets the target for the
inactive list and the free list combined to the free
target plus this average number of page steals per
second. Not only does this second give us enough
time to do all kinds of page flushing optimisations,
it also is small enough to keep page age distribution
within the system intact, allowing us to make good
choices on which pages to evict and which pages to
keep.

3.4 Optimised page flushing

Writing out pages from the inactive dirty list as we
encounter them can cause a system to totally de-
stroy read performance because of the extra disk
seeks done. A better solution is to delay writeout
of dirty pages and let these dirty pages accumulate
until we can do better IO clustering so that these
pages can be written out to disk with less disk seeks
and less interference with read performance.

Due to the development of the page replacement
changes happening in the code freeze, the system
currently has a rather simple implementation of
what’s present in FreeBSD 4.2. As long as there
are enough clean inactive pages around, we keep
moving those to the inactive clean list and never
bother with syncing out the dirty pages. Note that
this catches both clean pages and pages which have
been written to disk by the update daemon (which
commits filesystem data to disk periodically).

This means that under loads where data is seldom
written we can avoid writing out dirty inactive pages
most of the time, giving us much better latencies in
freeing pages and letting streaming reads continue
without the disk head moving away to write out
data all the time. Only under loads where lots of
pages are being dirtied quickly does the system suf-
fer a bit from syncing out dirty data irregularly.

Another alternative would have been the strategy
used in FreeBSD 4.3, where dirty pages get to stay



in the inactive list longer than clean pages but are
synced out before the clean pages are exhausted.
This strategy gives more consistent pageout IO in
FreeBSD during heavy write loads. However, a big
factor causing the irregularities in pageout writes
using the simpler strategy above may well be caused
because of the huge inactive list target in FreeBSD
(33It is not at all clear what this more complicated
strategy would do when used on the dynamically
sized inactive list on Linux 2.4, because of this Linux
2.4 uses the better understood strategy of evicting
clean inactive pages first and only after those are
gone start syncing the dirty ones.

3.5 Background page aging

On many systems the normal operating mode is that
after a period of relative activity a sudden load spike
comes in and the system has to deal with that as
gracefully as possible. Linux 2.2 has the problem
that, with the lack of an inactive page list, it is not
clear at all which pages should be evicted when a
sudden demand for memory kicks in.

Linux 2.4 is better in this respect, with the reclaim
candidates neatly separated out on the inactive list.
However, the inactive list could have any random
size the moment VM pressure drops off. We’d like
get the system in a more predictable state while
the VM pressure is low. In order to achieve this,
Linux 2.4 does background scanning of the pages,
trying to get a sane amount of pages on the inactive
list, but without scanning agressively so only truly
idle pages will end up on the inactive list and the
scanning overhead stays small.

3.6 Drop behind

Streaming IO doesn’t just have readahead, but also
its natural complement: drop behind. After the
program doing the streaming IO is done with a
page, we depress its priority heavily so it will be
a prime candidate for eviction. Not only does this
protect the working set of running processes from
being quickly evicted by streaming IO, but it also
prevents the streaming IO from competing with the
pageouts and pageins of the other running processes,
which reduces the number of disk seeks and allows
the streaming IO to proceed at a faster speed. Cur-
rently readahead and drop-behind only work for

read() and write(); mmap()ed files and swap-backed
anonymous memory aren’t supported yet.

4 Conclusions

Since the Linux 2.4 kernel’s VM subsystem is still
being tuned heavily, it is too early to come with
conclusive figures on performance. However, ini-
tial results seem to indicate that Linux 2.4 generally
has better performance than Linux 2.2 on the same
hardware.

Reports from users indicate that performance on
typical desktop machines has improved a lot, even
though the tuning of the new VM has only just be-
gun. Throughput figures for server machines seem
to be better too, but that could also be attributed
to the fact that the unification of the page cache
and the buffer cache is complete.

One big difference between the VM in Linux 2.4 and
the VM in Linux 2.2 is that the new VM is far less
sensitive to subtle changes. While in Linux 2.2 a
subtle change in the page flushing logic could upset
page replacement, in Linux 2.4 it is possible to tweak
the various aspects of the VM with predictable re-
sults and little to no side-effects in the rest of the
VM.

The solid performance and relative insensitivity to
subtle changes in the environment can be taken as
a sign that the Linux 2.4 VM is not just a set of
simple fixes for the problems experienced in Linux
2.2, but also a good base for future development.

5 Remaining issues

The Linux 2.4 VM mainly contains easy to imple-
ment and obvious to verify solutions for some of the
known problems Linux 2.2 suffers from. A number
of issues are either too subtle to implement during
the code freeze or will have too much impact on
the code. The complete list of TODO items can be
found on the Linux-MM page[Linux-MM]; here are
the most important ones:

• Low memory deadlock prevention: with the
arrival of journaling and delayed-allocation



filesystems it is possible that the system will
need to allocate memory in order to free mem-
ory; more precisely, to write out data so mem-
ory can become freeable. To remove the possi-
bility for deadlock, we need to limit the num-
ber of outstanding transactions to a safe num-
ber, possibly letting each of the page flushing
functions indicate how much memory it may
need and doing bookkeeping of these values.
Note that the same problem occurs with swap
over network.

• Load control: no matter how good we can get
the page replacement code, there will always
be a point where the system ends up thrashing
to death. Implementing a simple load con-
trol system, where processes get suspended
in round-robin fashion when the paging load
gets too high, can keep the system alive un-
der heavy overload and allow the system to
get enough work done to bring itself back to a
sane state.

• RSS limits and guarantees: in some situations
it is desirable to control the amount of phys-
ical memory a process can consume (the res-
ident set size, or RSS). With the virtual ad-
dress based page scanning of Linux’ VM sub-
system it is trivial to implement RSS ulimits
and minimal RSS guarantees. Both help to
protect processes under heavy load and allow
the system administrator to better control the
use of memory resources.

• VM balancing: in Linux 2.4, the balancing
between the eviction of cache pages, swap-
backed anonymous memory and the inode and
dentry caches is essentially the same as in
Linux 2.2. While this seems to work well
for most cases there are some possible scenar-
ios where a few of the caches push the other
users out of memory, leading to suboptimal
system performance. It may be worthwhile
to look into improving the balancing algo-
rithm to achieve better performance in ”non-
standard” situations.

• Unified readahead: currently readahead and
drop-behind only works for read() and write().
Ideally they should work for mmap()ed files
and anonymous memory too. Having the
same set of algorithms for both read()/write(),
mmap() and swap-backed anonymous mem-
ory will simplify the code and make perfor-
mance improvements in the readahead and

drop-behind code immediately available to all
of the system.

6 Acknowledgements

The author would like to thank, in no particular
order: Stephen Tweedie, for taking care of mem-
ory management in Linux 1.2, 2.0 and 2.2 and
also for his help with this paper; Matt Dillon,
for taking the time to explain the rationale be-
hind every little piece of the FreeBSD VM; Conec-
tiva Inc, who employ the author to hack the
Linux kernel and the wonderful crowd testers from
#kernelnewbies[Kernelnewbies] and elsewhere who
have helped flesh out the bugs in the Linux 2.4 VM.

References

[de Castro] Rodrigo S. de Castro
Linux 2.4 Virtual Memory Overview (2001)
http://linuxcompressed.sourceforge.
net/vm24/

[Dillon] Matthew Dillon
Design Elements of the FreeBSD VM System
(2000)
http://www.daemonnews.org/200001/
freebsd_vm.html

[Kernelnewbies] Kernelnewbies
http://kernelnewbies.org/

[Linux-MM] The Linux Memory Management
home page
http://linux-mm.org/

[Smaragdis, Kaplan, Wilson] Yannis Smaragdakis,
Scott F. Kaplan and Paul R. Wilson
EELRU: Simple and Effective Adaptive Page
Replacement,
SIGMETRICS ’99
http://www.cs.amherst.edu/~sfkaplan/
papers/index.html

[Note] Extensive documentation about page re-
placement algorithms is available practically
everywhere. The 3 algorithms discussed in this
paper are:

• NRU: Not Recently Used, we scan
through memory and evict every page that
wasn’t accessed since we last scanned it.



• LRU: we evict those pages that haven’t
been accessed for the longest time.

• LFU: we evict those pages that have been
accessed least frequently in recent times.


